




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
TerminologyTomography
–
from
the
Greek
tomos,
meaning
“section”CT:Computerized
transverse
axial
tomographyComputer-assisted
tomographyComputerized
axial
tomographyComputerized
transaxial
transmission
reconstructivetomographyComputerized
tomographyReconstructive
tomographyComputed
tomographyEstablished
by
the
Radiological
Society
of
NorthAmerica
in
their
major
journal
RadiologySuperimposition
of
all
structures
on
the
film,whi akes
it
difficult
and
sometimesimpossible
to
distinguish
a
particular
detail.Radiography
is
a
qualitative
rather
thantative
procedureLow
image
contrastLimitation
of
Radiography4TOMOSYNTHESIS
Imaging最小混疊提高圖像對比度(3)量化The
Goal
of
CTG
N
Hounsfield&1979年生理醫(yī)學(xué)獎X-CTA
M
CormackX-CT工作原理示意圖檢測器陣列Image
reconstructionfrom
projections
is
theprocess
of
producing
animage
of
atwo-dimensional
distribution(usually
somephysicalproperty)
from
estimatesof
its
line
integrals
along
afinite
number
of
lines
ofknown
location.DefinitionProjectionLine
integrals:
(
x,
y)dlI0I00II0I1I23I
I41234Image
reconstruction
from
projections
is
the
process
ofproducing
an
image
of
a
two-dimensional
distribution
(usuallysome
physical
property)
from
estimates
of
its
line
integrals
along
a
finite
number
of
lines
of
known
location.DefinitionddI
I
e1
2
d
1
01
3
d
I3
I0
e2
0I
I
e
d
3
4
…0I0I56I
I60
I
e
d
2
3
IX線源檢測器GenerationCTPencil
beamSingle
detectorX線源檢測器Second
GenerationCTMultiplePencil
beamMultipledetectorX線源檢測器Third
Generation
CTFan
beamMultipledetectorarrayX線源Fourth
Generation
CTFan
beam檢測器Stationaryring
ofdetectorsHelical
/
Spiral
CTVolume
CT
scannerThe
x-ray
tube
anddetectors
rotatecontinuously
as
thepatient
movescontinuously
throughthe
gantry.從投影重建圖像xyR0Integral
Linexcos
ysin
Rf
(x,
y)2D
function從投影函數(shù)
g
(R)
重建密度函數(shù)
f
(x,
y)R(x,
y)xyyxcosysinR
f
(x,
y)dlProjection
g
(R)l中心切片定理g
(R)f
(
x,
y)
f
(r,
)xyR0uvG
(
)1D
FTF
(u,
v)
F
(
,
)2D
FTx
cos
y
sin
RThe
1D
F.T.
of
a
projection
at
angle
θ
forms
a
linein
the
2D
F.T.
plane
at
this
same
angle.f
(
x,
y)
f
(r,
)F
(u,
v)
F
(
,
)g
(
R
)x2D
FTyR0uvG
(
)1D
FTx
cos
y
sin
RThe
1D
F.T.
of
a
projection
at
angle
θ
forms
a
linein
the
2D
F.T.
plane
at
this
same
angle.G
(
)F
(,
)中心切片定理2
f
(r
,
)
[r
cos(
)]
rdrd0
0中心切片定理投影函數(shù):
g
(R)
f
(
x,
y)
(
x
cos
y
sin
R)dxdy
變換:F
(u,
v)
f
(
x,
y)
exp[i2
(ux
vy)]
dxdyF
(
,
)
f
(
x,
y
)
exp[i2
(
x
cos
y
sin
)]
dxdyδ函數(shù)篩選性質(zhì):e
i
2
(
x
cos
y
sin
)
e
i
2
R
(
x
cos
y
sin
R
)
dR投影線函數(shù)f
(
x,
y)
f
(r,
)F
(u,
v)
F
(
,
)2D
FTg
(R)xyR0uvG
(
)1D
FTx
cos
y
sin
RCentral
section
theoremF
(,
)
f
(x,
y)
ei
2
(
x
cos
y
sin
)
dxdy
f
(x,
y)
(x
cos
y
sin
R)
ei
2R
dxdydR
ei
2R
dR
f
(x,
y)
(x
cos
y
sin
R)
dxdy
g
(R)
ei2R
dR
F1g
(R)δ函數(shù)篩選性質(zhì)投影函數(shù)計(jì)算1D
變換2D變換f
(x,y)
f
(r,
)F
(u,
v)
F
(,
)2D
FTg
(R)xyR0uvG
(
)1D
FTx
cos
y
sin
Rg
(R)
f
(
x,
y)
(
x
cos
y
sin
R)dxdy
2
f
(r
,
)
[r
cos(
)]
rdrd0
0空間域頻域插值G
()g
(R)f
(
x,y)F
(
,
)F
(u,
v)
:(o
~)1D
FT2D
IFTImage
reconstruction
based
on
F.T.yCentral
section
theoremf
(x,
y)F
(u,
v)2D
FTuvg
(R)
0xG
(
)1D
FTG
(
)1D
FTf
(x,
y)yuF
(u,
v)2D
FTvg
(R)x空間域頻域g
(R)
2
sin
c(2R)F
(u,
v)1D
FT2D
IFT
:(o
~)G
(
)
F1
g
R例題
rect
2
插值F
(,
)
circ
f
(x,y)
J1
2
r
/
r空間域G
()g
(R)f
(
x,y)F
(
,
)F
(u,
v)頻域插值
:(o
~)1D
FT2D
IFT費(fèi)時(shí)的二維運(yùn)算插值造成的高頻失真變換方法重建圖像中的問題Back
Projection直接反投影法造成的偽像000010000010000111000001010010+=111141111+010010001+001010100直接反投影重建方法2D圖像校正!重建圖像原始圖像直接反投影法成像系統(tǒng)H圖像恢復(fù)系統(tǒng)1/
Hfb
(x,
y)f
(x,
y)δ函數(shù)hb(x,y)或hb(r)系統(tǒng)沖激響應(yīng)輸入δ函數(shù)直接反投影法成像系統(tǒng)Hhb(x,y)或hb
(r)1、輸入δ函數(shù)
(r)f
(x,
y)
(x,
y)
rg
R2、投影函數(shù)3、反投影重建圖像函數(shù)
hb(x,
y)
或
hb
(r)直接反投影法成像系統(tǒng)H
2
0
0
(r)
r
cos
R
rdrd
rg
(R)
(r)已知輸入δ函數(shù)
(x,
y)
r,求投影函數(shù)
g
Rf
(x,
y)xyR0R
0R
0r
cos
Rxcos
ysin
R換積分限(為計(jì)算δ函數(shù))δ函數(shù)篩選性質(zhì)(令r
=0)(R)
(r)
r
cos
R
r
drd
0
r
(r)d
r
cos
R
drd
0
0
(R)
(R)
投影線已知投影函數(shù)g
R
(R),求直接反投影函數(shù)(x,
y)xyyxcosysing
(R)xyx
cos
y
sin
R00R(x,
y)一般情況下,一個(gè)特定角度θ下的反投影對重建的密度函數(shù)的貢獻(xiàn):b
(x,
y)
g
(x
cos
ysin)說明:處在投影角為θ
時(shí),二維平面中坐標(biāo)為
(x,y)處被反投影到的值是等于投影函數(shù)
g
R
在坐標(biāo)為
(x
cos
y
sin
)
處的值。g
(x
cos
y
sin
)fb
(x,
y)一般情況下,一個(gè)特定角度θ下的直接反投影對重建的密度函數(shù)的貢獻(xiàn):b
(x,
y)
g
(x
cos
y
sin)180度直接反投影重建圖像:
b
(x,
y)dgbf
(x,
y)
00dR
x
cos
y
sin
R
dR
R
r
cos
R
dRgbf
(r,
)
0d已知投影函數(shù)g
R
(R),求直接反投影函數(shù)fb
(x,y)δ函數(shù)篩選性質(zhì)
g
R
x
cos
y
sin
RdRg
(R)
與
b
(x,
y)
的關(guān)系式!g
(R)
與
fb
(x,
y)的關(guān)系式!已知投影函數(shù),求直接反投影函數(shù)
gR
(R)g
(R)f
(x,
y)xyR0R
0R
0r
cos
Rx
cos
ysin
Rbf
(x,
y)
002
r
cos
0
R
r
cos
R
dR
r
cos
d
bf
(r,
)
0d
2
d
1
dr
21rδ函數(shù)R
=0δ函數(shù)性質(zhì)1r根
gR
r
cos
R
dR
bf
(r,
)
0df
'xi
i
x
x
nf
x
i1重建圖像原始圖像直接反投影法成像系統(tǒng)
Hb
()
1/圖像恢復(fù)系統(tǒng)hb
(r)
1/
r1Hb
()
直接反投影法的圖像校正bF(,
)
F
(,
)
2f
(x,
y)F
,
1
F
函數(shù)f
(x,
y)bFb
(,
)直接反投影空間域頻域f
(x,
y)F
(,
)Fb
(,
)2D
FT2D
IFTg
(R)直接反投影法的圖像校正濾波反投影取投影直接反投影的偽像校正f
(
x,
y
)g
(
R
)直接反投影fb
(
x,
y
)2D濾波f
(
x,
y
)取投影1D濾波直接反投影f
(
x,
y
)g
(
R
)f
(
x,
y
)濾波反投影重建圖像的思路g’
(
R
)000010000010000111000001010010+=111141111+010010001+001010100直接反投影重建方法2D圖像校正!=000040000-1/3-1/3-1/3111-1/3-1/3-1/3-1/31-1/3-1/31-1/3-1/31-1/3++1-1/3-1/3-1/31-1/3-1/3-1/31+-1/3-1/31-1/31-1/31-1/3-1/3濾波反投影重建方法000010000010-1/31-1/3濾波運(yùn)算濾波函數(shù)無需圖像校正!?已知投影函數(shù)g
R,求直接反投影函數(shù)fb
(x,y)g
(R)xy0(x,
y)(x,
y)xyyxcosysing
(x
cos
y
sin
)Rx
cos
y
sin
RdR
g
x
cos
y
sin
d00d
g
R
bf
x,
y
180度直接反投影重建圖像:0
bd
g
R
x
cos
y
sin
R
dR
f
x,
y
直接反投影:
g'
(R)
xcos
+ysin
-R
dRd
02D
FT換積分限δ函數(shù)性質(zhì)
j
2
x
cos
y
sin
002
f x,
y
F
,
e
d
d
F
e
j
2
R
d
xcos
+ysin
-R
dRd
0
F
,
e
j
2
x
cos
y
sin
d
d0
e
j
2
x
cos
y
sin
d
d=F
0F(,
)
F(,
)e
i
2
(
x
cos
y
sin
)
e
i
2
R
(
x
cos
y
sin
R)
dR0
bd
g
R
x
cos
y
sin
R
dR
f
x,
y
直接反投影:
g'
(R)
xcos
+ysin
-R
dRd
02D
FT換積分限δ函數(shù)性質(zhì)
j
2
x
cos
y
sin
002
f x,
y
F
,
e
d
d
F
e
j
2
R
d
xcos
+ysin
-R
dRd
0
F
,
e
j
2
x
cos
y
sin
d
d0
e
j
2
x
cos
y
sin
d
d=F
0F(,
)
F(,
)dj
2RF
e
g
'
0
bd
gR
x
cos
y
sin
R
dRf
x
,
y
直接反投影:f
x
,
y
R
dR
y
sin0x
cosg’
R
d
濾波反投影:g
'
R?原始圖像投影函數(shù)直接反投影g
(R)重建圖像原始圖像g
(R)直接反投影修正后投影函數(shù)重建圖像投影函數(shù)
′?
?
?dj
2RF
eg
'
g'
(R)dj
2RF
e(投影)g
(R)1D
FTF
()(頻率域函數(shù))F
()
×1D
IFT空間域頻域f
(
x,
y
)1D
FTg
(
R
)g
'
(
R
)1D
IFT
F1{g
(
R
)}
F1{g
(
R
)}濾波反投影法?
???
′?
??
?
??
?
|?|
??????
d?
??
???
??
??
?|?|空間域頻域f
(
x
,
y
)1D
FTg
(
R
)g
'
(
R
)1D
IFTF1{
g
(
R
)}
F1{
g
(
R
)}濾波反投影法f
(x,
y)
C(R)g
(R)g'
(R)卷積反投影法
11C(R)
Ff
(x,
y)C(R)g
(R)g'
(R)卷積反投影法
11C(R)
Fg
'
(R)
g
RC
R???1
/(
e
)1
/
濾波函數(shù)
11C(R)
F
0
lim
e其中
e
H
e
H
e
式中是單位階躍函數(shù)。H
濾波函數(shù)
11C(R)
F
e
H
e
H
e11
011
0
lim
FR
lim
FC
根據(jù)變換的性質(zhì),假設(shè)
A
為一個(gè)aR
是它的逆變換,則有2F
1
A
i
aR的函數(shù),A
e
H
e
H
濾波函數(shù)
11C(R)
F
e
H
e
H
11
011
0
lim
F
e
lim
FA
e
H
e
H
2R2e
ei
2R
dd
e
ei
2R1F
A
2
i4R
aR00
11濾波函數(shù)C(R)
F
e
H
e
H
e
2
i
i4
R
2
2
R
a
'
R22F
1
A
i
aR
4
2
R2
222
4
2
R
2
CR
lim
0
2222
2
4
2
R2
4
R2
2=1
/(
e
)1
/
濾波函數(shù)
11C(R)
F
11
1
0
1
0lim
eC(R)
F
lim
F
e22
4
2
R2
lim
0
2
4
2
R22
0
lim
e22
4
2
R2
2
4
2
R2
2C(R)
2
2
4
2
R2
C(R)
lim
0
2
4
2
R2
2R2
/
2
/
23
/
21/
8
2H
R
L
(
)
0
0頻帶有限的濾波函數(shù):R-L濾波函數(shù)2
0H
(
)
rect
(
)H
R
L
(
)
0
0頻帶有限的濾波函數(shù)02
0
2
2
0
0
rect
H
(
)
rect
(
)
0
1
20
其他當(dāng)0
1
0CR
F020202sinc
2
R
sinc
Rrect
0
20
0
1頻帶有限的濾波函數(shù)2
0H
(
)
rect
(
)
22000
2
sin
c
2
RC
(
R
)
R
sin
cRhR
L
(
R
)H
R
L
(
)
0
0nh
(n
)R
LR-L卷積函數(shù)14T
21n
T2
2C
(
R
)
C
(nT
)
0
2當(dāng)n為偶數(shù),但
0當(dāng)n為奇數(shù)當(dāng)n
0012
T
Rh
R
L
(
R
)
22000
2
sin
c
2
RC
(
R
)
R
sin
c離散化的卷積函數(shù)S-L濾波函數(shù)HS
L
(
)
0
02
2
S
LH
(
)
rect
(
)
sin
c(
)
20
0
0
20S-L濾波函數(shù)S
LH
(
)
rect
(
)
sin
c(
)2
02
0CR
F201
4
R0
002
21
4
1
4
R
sin2
R
0
0
rect
2
sinc
2
1
HS
L
()
0
20
20
0Rh
S
L
(
R
)(
b
)nh
S
L
(
n
)S-L卷積函數(shù)C
nT
2
2T
2
4n
2
1n
0,
1,
2...012
T
CR201
4
R2
(
a
)1
40
1
40
R
sin2
R2
0
f
(x,
y)g
(R)g'
(R)卷積反投影法
11C(R)
FC(R)g
'
(R)
g
RC
RnnR
-
LS
-
LRadon空間與正弦圖f
(x,y)或f
(r,
)物體空間g
(R)或g
(R,
)Radon
空間F
(u,v)或F
(
,
)空間2R
12R1F
12F
1F2F1中心切片定理物體空間、空間與Radon
空間R02(R,)xyR0g
(R)0探測器通道投影角度平行線投影(R,)特定投影角下取得的投影函數(shù)。Radon
projection
or
sinogramxy0Radon
projection
or
sinogram(r,)f
(x,
y)f
(r,)R
r
cos(
)R2(R,)0探測器通道投影角度r(R',
')
R(R,)(R',
')單點(diǎn)在不同投影角下取得的投影值落在正弦線上。SinogramObject正弦圖空間中的采樣模式(平行線投影)R探測器通道投影角度一次平行線投影g
(R)xyR002g
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 常州工程職業(yè)技術(shù)學(xué)院《高級阿拉伯語二》2023-2024學(xué)年第二學(xué)期期末試卷
- 新疆科技學(xué)院《外國史學(xué)名著選讀》2023-2024學(xué)年第二學(xué)期期末試卷
- 淮北理工學(xué)院《社會學(xué)原理類》2023-2024學(xué)年第二學(xué)期期末試卷
- 重慶智能工程職業(yè)學(xué)院《生物統(tǒng)計(jì)與應(yīng)用》2023-2024學(xué)年第二學(xué)期期末試卷
- 赤峰學(xué)院《教育史專題研究》2023-2024學(xué)年第二學(xué)期期末試卷
- 梧州學(xué)院《現(xiàn)代舞創(chuàng)編》2023-2024學(xué)年第二學(xué)期期末試卷
- 東北林業(yè)大學(xué)《生物科學(xué)專業(yè)英語》2023-2024學(xué)年第二學(xué)期期末試卷
- 山西航空職業(yè)技術(shù)學(xué)院《攝影報(bào)道》2023-2024學(xué)年第二學(xué)期期末試卷
- 合肥共達(dá)職業(yè)技術(shù)學(xué)院《現(xiàn)代電子測量技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷
- 內(nèi)蒙古工業(yè)大學(xué)《概率論與數(shù)據(jù)統(tǒng)計(jì)》2023-2024學(xué)年第二學(xué)期期末試卷
- 車輛實(shí)際使用權(quán)協(xié)議書范文模板
- 新版加油站全員安全生產(chǎn)責(zé)任制
- 腦出血課件完整版本
- 涼山州小學(xué)數(shù)學(xué)教師業(yè)務(wù)素質(zhì)考試試題(真題+訓(xùn)練)
- 長護(hù)險(xiǎn)定點(diǎn)機(jī)構(gòu)自查報(bào)告
- GB/T 6003.2-2024試驗(yàn)篩技術(shù)要求和檢驗(yàn)第2部分:金屬穿孔板試驗(yàn)篩
- 2025年初中地理八年級上冊全冊重點(diǎn)知識點(diǎn)復(fù)習(xí)課件
- 人工智能大模型
- 川教版信息技術(shù)五年級下冊全冊教學(xué)設(shè)計(jì)教案
- 重慶市江北區(qū)社區(qū)專職工作者招考聘用高頻500題難、易錯點(diǎn)模擬試題附帶答案詳解
- 掩體構(gòu)筑與偽裝教學(xué)法教案
評論
0/150
提交評論