




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
技術(shù)創(chuàng)新,變革未來統(tǒng)一的大數(shù)據(jù)分析及AI應用平臺All
products,
computer
systems,
dates,
and
figures
are
preliminary
based
on
current
expectations,
and
are
subject
to
change
without
notice.2IntelGPUfutureAutomatedDrivingDedicatedMedia/VisionAcceleratio
DLnferencn I eDedicatedDLTrainingGraphics,Media&
Analytics2H’192H’19NNP-LNNP-IFlexible
IfneededDedicatededgeCloudDevIceOneSizeDoes
NotFitAll31Anopensourceversionisavailableat:01.org/openvinotoolkit*Othernamesandbrandsmaybeclaimedasthepropertyof
others.Developerpersonasshowaboverepresenttheprimaryuserbaseforeachrow,butarenot
mutually-exclusiveAllproducts,computersystems,dates,andfiguresarepreliminarybasedoncurrentexpectations,andaresubjecttochangewithout
notice.TOOLKITSAppdeveloperslibrariesDatascientistsKernelsLibrarydevelopersOpensourceplatformforbuildingE2EAnalytics&AIapplicationsonApacheSpark*withdistributedTensorFlow*,Keras*,
BigDLDeeplearninginferencedeploymentonCPU/GPU/FPGA/VPUforCaffe*,TensorFlow*,MXNet*,ONNX*,
Kaldi*Opensource,scalable,andextensibledistributeddeeplearningplatformbuiltonKubernetes
(BETA)Intel-optimized
FrameworksAndmoreframeworkoptimizationsunderwayincludingPaddlePaddle*,Chainer*,CNTK*&
othersPythonScikit-learnPandasNumPyRCartRandom
Foreste1071DistributedMlLib(on
Spark)MahoutIntel?
Distribution
for
Python*Inteldistributionoptimizedformachine
learningIntel?Data
Analytics
AccelerationLibrary
(DAAL)Highperformancemachinelearning&dataanalytics
libraryOpensourcecompilerfordeeplearningmodelcomputationsoptimizedformultipledevices(CPU,GPU,NNP)frommultipleframeworks(TF,MXNet,
ONNX)Intel?Math
Kernel
LibraryforDeep
NeuralNetworks
(MKL-DNN)OpensourceDNNfunctions
forCPU/integrated
graphicsMachine
learning Deep
learning*****SpeedUp
DevelopmentUsingOpenAI
SoftwareDistributed,
High-PerformanceDeepLearning
FrameworkforApache
Spark*/intel-analytics/bigdlAnalytics+AI
PlatformDistributedTensorFlow*,Keras*and
BigDLonApache
Spark*/intel-analytics/analytics-zooAI
onUnifyingAnalytics+AIonApache
Spark**Othernamesandbrandsmaybeclaimedasthepropertyof
others.WhyAnalytics
Zoo?Real-WorldML/DLApplicationsAreComplexDataAnalytics
Pipelines“Hidden
Technical
Debt
in
Machine
Learning
Systems”,Sculleyetal.,Google,NIPS2015
PaperLarge-ScaleImageRecognitionat
JD.com/en-us/articles/building-large-scale-image-feature-extraction-with-bigdl-at-jdcomChasmb/wDeepLearningandBigDataCommunitiesDeeplearning
expertsTheChasmReal-worldusers(bigdatausers,datascientists,analysts,
etc.)Distributed,
High-PerformanceDeepLearning
FrameworkforApache
Spark*/intel-analytics/bigdlAnalytics+AI
PlatformDistributedTensorFlow*,Keras*and
BigDLonApache
Spark*/intel-analytics/analytics-zooAI
onUnifyingAnalytics+AIonApache
Spark**Othernamesandbrandsmaybeclaimedasthepropertyof
others./en-us/videos/analytics-zoo-overviewAnalyticsZoo
VideoAnalyticsZoo:End-to-EndDLPipelineMadeEasyforBig
DataPrototypeonlaptopusingsample
dataExperimentonclusterswithhistory
dataDeploymentwithproduction,distribtued
bigdata
pipelines“Zero”codechangefromlaptoptodistributed
clusterDirectlyaccessingproductionbigdata
(Hadoop/Hive/HBase)Easilyprototypingtheend-to-end
pipelineSeamlesslydeployedonproductionbigdata
clustersWhatisAnalytics
Zoo?Analytics
ZooBERTtfpark:DistributedTF
onBigDatannframes:SparkDataframes&
MLPipelinesforDeep
LearningDistributedKerasw/autogradonBig
DataDistributedModelServing(batch,streaming&
online)Image
ClassificationObject
Detectionimage3D
imageTransformertextSeq2SeqUse
caseModelFeature
EngineeringHigh
LevelPipelinesBackend/Librarytime
seriesRecommendation Anomaly
Detection Text
Classification Text
Matching
End-to-End,
Integrated
Data
Analytics
+
AI
Platform /intel-analytics/analytics-zooKeras PyTorch BigDL NLP
Architect Apache
Spark Apache
FlinkMKLDNN OpenVINO Intel?Optane?
DCPMM DLBoost
(VNNI)TensorFlowRayAnalyticsZooUnifiedAnalytics+AIPlatformforBig
DataBuildend-to-enddeeplearningapplicationsforbig
dataDistributedTensorFlowon
SparkKerasAPI(withautograd&transferlearningsupport)on
Sparknnframes:nativeDLsupportforSparkDataFramesandML
PipelinesProductionizedeeplearningapplicationsforbigdataat
scalePlainJava/PythonmodelservingAPIs(w/OpenVINO
support)SupportWebServices,Spark,Flink,Storm,Kafka,etc.Out-of-the-box
solutionsBuilt-indeeplearningmodels,featureengineeringoperations,andreferenceusecasesDistributedTF&Kerason
SparkDatawranglingandanalysisusing
PySparkDeeplearning
modeldevelopmentusingTensorFlowor
KerasDistributedtraining
/inferenceon
Spark#pyspark
codetrain_rdd=spark.hadoopFile(…).map(…)dataset=
TFDataset.from_rdd(train_rdd,…)#tensorflow
codeimporttensorflowas
tfslim=
tf.contrib.slimimages,labels=
dataset.tensorswithslim.arg_scope(lenet.lenet_arg_scope()):logits,end_points=lenet.lenet(images,
…)loss=tf.reduce_mean(\tf.losses.sparse_softmax_cross_entropy(\logits=logits,
labels=labels))#distributedtrainingon
Sparkoptimizer=TFOptimizer.from_loss(loss,Adam(…))
\optimizer.optimize(end_trigger=MaxEpoch(5))WriteTensorFlowcodeinlineinPySpark
programSparkDataframe&MLPipelinefor
DL#Sparkdataframetransformationsparquetfile=spark.read.parquet(…)train_df=
parquetfile.withColumn(…)#Keras
APImodel=
Sequential().add(Convolution2D(32,3,3,activation='relu',input_shape=…))
\.add(MaxPooling2D(pool_size=(2,2)))
\.add(Flatten()).add(Dense(10,
activation='softmax')))#SparkML
pipelineEstimater=NNEstimater(model,CrossEntropyCriterion())
\.setLearningRate(0.003).setBatchSize(40).setMaxEpoch(5)
\.setFeaturesCol("image")nnModel=
estimater.fit(train_df)DistributedModel
ServingHDFS/S3KafkaFlumeKinesisTwitterSpoutAnalyticsZooModelSpoutBoltBoltBoltAnalyticsZooModelBoltBoltDistributedmodelservinginWebService,Flink,Kafka,Storm,
etc.PlainJavaorPythonAPI,withOpenVINOandDLBoost(VNNI)
supportAnalyticsZooUse
CasesComputerVisionBasedProductDefectDetectionin
Midea/en-us/articles/industrial-inspection-platform-in-midea-and-kuka-using-distributed-tensorflow-on-
analyticsNLPBasedCustomerServiceChatbotforMicrosoft
Azure/en-us/articles
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 人教數(shù)學說課稿小學模板(17篇)
- 臨床前研究數(shù)據(jù)分析企業(yè)制定與實施新質(zhì)生產(chǎn)力戰(zhàn)略研究報告
- 2025年礦物原藥合作協(xié)議書
- 婦科用制劑行業(yè)深度調(diào)研及發(fā)展戰(zhàn)略咨詢報告
- 未涂布印刷書寫用紙企業(yè)ESG實踐與創(chuàng)新戰(zhàn)略研究報告
- 家用智能康復床行業(yè)跨境出海戰(zhàn)略研究報告
- 健康促進AI智能設(shè)備行業(yè)深度調(diào)研及發(fā)展戰(zhàn)略咨詢報告
- 基因工程促卵泡激素行業(yè)跨境出海戰(zhàn)略研究報告
- 壁紙企業(yè)縣域市場拓展與下沉戰(zhàn)略研究報告
- 人造毛皮大衣企業(yè)ESG實踐與創(chuàng)新戰(zhàn)略研究報告
- 2025年春新外研版(三起)英語三年級下冊課件 Unit3第1課時startup
- FSC培訓課件教學課件
- 2025年福建福州地鐵集團招聘筆試參考題庫含答案解析
- 康復健康小屋課件
- 《內(nèi)部審計程序》課件
- 八年級上冊英語完形填空、閱讀理解綜合訓練100題-含參考答案
- 江西省宜春市豐城市第九中學2024-2025學年九年級上學期第二次段考化學試卷(日新班)(無答案)
- 江蘇省2024-2025年跨地區(qū)職業(yè)學校職教高考一輪聯(lián)考(機械專業(yè)綜合理論試卷含答案)
- 2024年事業(yè)單位租車服務(wù)滿意度調(diào)查及改進協(xié)議3篇
- UL489標準中文版-2019斷路器UL標準中文版
- 露天礦邊坡穩(wěn)定課件所有章節(jié)整合
評論
0/150
提交評論