2023屆甘肅省玉門市一中高三最后一卷數(shù)學試卷(含答案解析)_第1頁
2023屆甘肅省玉門市一中高三最后一卷數(shù)學試卷(含答案解析)_第2頁
2023屆甘肅省玉門市一中高三最后一卷數(shù)學試卷(含答案解析)_第3頁
2023屆甘肅省玉門市一中高三最后一卷數(shù)學試卷(含答案解析)_第4頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023高考數(shù)學模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知分別為雙曲線的左、右焦點,過的直線與雙曲線的左、右兩支分別交于兩點,若,則雙曲線的離心率為()A. B.4 C.2 D.2.已知實數(shù)、滿足約束條件,則的最大值為()A. B. C. D.3.已知雙曲線C:()的左、右焦點分別為,過的直線l與雙曲線C的左支交于A、B兩點.若,則雙曲線C的漸近線方程為()A. B. C. D.4.,則與位置關(guān)系是()A.平行 B.異面C.相交 D.平行或異面或相交5.集合,,則()A. B. C. D.6.已知集合U={1,2,3,4,5,6},A={2,4},B={3,4},則=()A.{3,5,6} B.{1,5,6} C.{2,3,4} D.{1,2,3,5,6}7.如圖所示,已知某幾何體的三視圖及其尺寸(單位:),則該幾何體的表面積為()A. B.C. D.8.已知數(shù)列滿足,且,則的值是()A. B. C.4 D.9.若函數(shù)的圖象上兩點,關(guān)于直線的對稱點在的圖象上,則的取值范圍是()A. B. C. D.10.已知集合,集合,若,則()A. B. C. D.11.在中,點為中點,過點的直線與,所在直線分別交于點,,若,,則的最小值為()A. B.2 C.3 D.12.趙爽是我國古代數(shù)學家、天文學家,大約公元222年,趙爽為《周髀算經(jīng)》一書作序時,介紹了“勾股圓方圖”,又稱“趙爽弦圖”(以弦為邊長得到的正方形是由個全等的直角三角形再加上中間的一個小正方形組成的,如圖(1)),類比“趙爽弦圖”,可類似地構(gòu)造如圖(2)所示的圖形,它是由個全等的三角形與中間的一個小正六邊形組成的一個大正六邊形,設(shè),若在大正六邊形中隨機取一點,則此點取自小正六邊形的概率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,,是的角平分線,設(shè),則實數(shù)的取值范圍是__________.14.若變量,滿足約束條件則的最大值為________.15.雙曲線的左焦點為,點,點P為雙曲線右支上的動點,且周長的最小值為8,則雙曲線的實軸長為________,離心率為________.16.二項式的展開式中所有項的二項式系數(shù)之和是64,則展開式中的常數(shù)項為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中,角所對的邊分別為,若,,,且.(1)求角的值;(2)求的最大值.18.(12分)在四棱椎中,四邊形為菱形,,,,,,分別為,中點..(1)求證:;(2)求平面與平面所成銳二面角的余弦值.19.(12分)在直角坐標系中,橢圓的左、右焦點分別為,點在橢圓上且軸,直線交軸于點,,橢圓的離心率為.(1)求橢圓的方程;(2)過的直線交橢圓于兩點,且滿足,求的面積.20.(12分)已知,,求證:(1);(2).21.(12分)隨著電子閱讀的普及,傳統(tǒng)紙質(zhì)媒體遭受到了強烈的沖擊.某雜志社近9年來的紙質(zhì)廣告收入如下表所示:根據(jù)這9年的數(shù)據(jù),對和作線性相關(guān)性檢驗,求得樣本相關(guān)系數(shù)的絕對值為0.243;根據(jù)后5年的數(shù)據(jù),對和作線性相關(guān)性檢驗,求得樣本相關(guān)系數(shù)的絕對值為0.984.(1)如果要用線性回歸方程預(yù)測該雜志社2019年的紙質(zhì)廣告收入,現(xiàn)在有兩個方案,方案一:選取這9年數(shù)據(jù)進行預(yù)測,方案二:選取后5年數(shù)據(jù)進行預(yù)測.從實際生活背景以及線性相關(guān)性檢驗的角度分析,你覺得哪個方案更合適?附:相關(guān)性檢驗的臨界值表:(2)某購物網(wǎng)站同時銷售某本暢銷書籍的紙質(zhì)版本和電子書,據(jù)統(tǒng)計,在該網(wǎng)站購買該書籍的大量讀者中,只購買電子書的讀者比例為,紙質(zhì)版本和電子書同時購買的讀者比例為,現(xiàn)用此統(tǒng)計結(jié)果作為概率,若從上述讀者中隨機調(diào)查了3位,求購買電子書人數(shù)多于只購買紙質(zhì)版本人數(shù)的概率.22.(10分)已知函數(shù),,.函數(shù)的導函數(shù)在上存在零點.求實數(shù)的取值范圍;若存在實數(shù),當時,函數(shù)在時取得最大值,求正實數(shù)的最大值;若直線與曲線和都相切,且在軸上的截距為,求實數(shù)的值.

2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【答案解析】

由已知得,,由已知比值得,再利用雙曲線的定義可用表示出,,用勾股定理得出的等式,從而得離心率.【題目詳解】.又,可令,則.設(shè),得,即,解得,∴,,由得,,,該雙曲線的離心率.故選:A.【答案點睛】本題考查求雙曲線的離心率,解題關(guān)鍵是由向量數(shù)量積為0得出垂直關(guān)系,利用雙曲線的定義把雙曲線上的點到焦點的距離都用表示出來,從而再由勾股定理建立的關(guān)系.2.C【答案解析】

作出不等式組表示的平面區(qū)域,作出目標函數(shù)對應(yīng)的直線,結(jié)合圖象知當直線過點時,取得最大值.【題目詳解】解:作出約束條件表示的可行域是以為頂點的三角形及其內(nèi)部,如下圖表示:當目標函數(shù)經(jīng)過點時,取得最大值,最大值為.故選:C.【答案點睛】本題主要考查線性規(guī)劃等基礎(chǔ)知識;考查運算求解能力,數(shù)形結(jié)合思想,應(yīng)用意識,屬于中檔題.3.D【答案解析】

設(shè),利用余弦定理,結(jié)合雙曲線的定義進行求解即可.【題目詳解】設(shè),由雙曲線的定義可知:因此再由雙曲線的定義可知:,在三角形中,由余弦定理可知:,因此雙曲線的漸近線方程為:.故選:D【答案點睛】本題考查了雙曲線的定義的應(yīng)用,考查了余弦定理的應(yīng)用,考查了雙曲線的漸近線方程,考查了數(shù)學運算能力.4.D【答案解析】結(jié)合圖(1),(2),(3)所示的情況,可得a與b的關(guān)系分別是平行、異面或相交.選D.5.A【答案解析】

解一元二次不等式化簡集合A,再根據(jù)對數(shù)的真數(shù)大于零化簡集合B,求交集運算即可.【題目詳解】由可得,所以,由可得,所以,所以,故選A.【答案點睛】本題主要考查了集合的交集運算,涉及一元二次不等式解法及對數(shù)的概念,屬于中檔題.6.B【答案解析】

按補集、交集定義,即可求解.【題目詳解】={1,3,5,6},={1,2,5,6},所以={1,5,6}.故選:B.【答案點睛】本題考查集合間的運算,屬于基礎(chǔ)題.7.C【答案解析】

由三視圖知,該幾何體是一個圓錐,其母線長是5,底面直徑是6,據(jù)此可計算出答案.【題目詳解】由三視圖知,該幾何體是一個圓錐,其母線長是5,底面直徑是6,該幾何體的表面積.故選:C【答案點睛】本題主要考查了三視圖的知識,幾何體的表面積的計算.由三視圖正確恢復(fù)幾何體是解題的關(guān)鍵.8.B【答案解析】由,可得,所以數(shù)列是公比為的等比數(shù)列,所以,則,則,故選B.點睛:本題考查了等比數(shù)列的概念,等比數(shù)列的通項公式及等比數(shù)列的性質(zhì)的應(yīng)用,試題有一定的技巧,屬于中檔試題,解決這類問題的關(guān)鍵在于熟練掌握等比數(shù)列的有關(guān)公式并能靈活運用,尤其需要注意的是,等比數(shù)列的性質(zhì)和在使用等比數(shù)列的前n項和公式時,應(yīng)該要分類討論,有時還應(yīng)善于運用整體代換思想簡化運算過程.9.D【答案解析】

由題可知,可轉(zhuǎn)化為曲線與有兩個公共點,可轉(zhuǎn)化為方程有兩解,構(gòu)造函數(shù),利用導數(shù)研究函數(shù)單調(diào)性,分析即得解【題目詳解】函數(shù)的圖象上兩點,關(guān)于直線的對稱點在上,即曲線與有兩個公共點,即方程有兩解,即有兩解,令,則,則當時,;當時,,故時取得極大值,也即為最大值,當時,;當時,,所以滿足條件.故選:D【答案點睛】本題考查了利用導數(shù)研究函數(shù)的零點,考查了學生綜合分析,轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學運算的能力,屬于較難題.10.A【答案解析】

根據(jù)或,驗證交集后求得的值.【題目詳解】因為,所以或.當時,,不符合題意,當時,.故選A.【答案點睛】本小題主要考查集合的交集概念及運算,屬于基礎(chǔ)題.11.B【答案解析】

由,,三點共線,可得,轉(zhuǎn)化,利用均值不等式,即得解.【題目詳解】因為點為中點,所以,又因為,,所以.因為,,三點共線,所以,所以,當且僅當即時等號成立,所以的最小值為1.故選:B【答案點睛】本題考查了三點共線的向量表示和利用均值不等式求最值,考查了學生綜合分析,轉(zhuǎn)化劃歸,數(shù)學運算的能力,屬于中檔題.12.D【答案解析】

設(shè),則,小正六邊形的邊長為,利用余弦定理可得大正六邊形的邊長為,再利用面積之比可得結(jié)論.【題目詳解】由題意,設(shè),則,即小正六邊形的邊長為,所以,,,在中,由余弦定理得,即,解得,所以,大正六邊形的邊長為,所以,小正六邊形的面積為,大正六邊形的面積為,所以,此點取自小正六邊形的概率.故選:D.【答案點睛】本題考查概率的求法,考查余弦定理、幾何概型等基礎(chǔ)知識,考查運算求解能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【答案解析】

設(shè),,,由,用面積公式表示面積可得到,利用,即得解.【題目詳解】設(shè),,,由得:,化簡得,由于,故.故答案為:【答案點睛】本題考查了解三角形綜合,考查了學生轉(zhuǎn)化劃歸,綜合分析,數(shù)學運算能力,屬于中檔題.14.7【答案解析】

畫出不等式組表示的平面區(qū)域,數(shù)形結(jié)合,即可容易求得目標函數(shù)的最大值.【題目詳解】作出不等式組所表示的平面區(qū)域,如下圖陰影部分所示.觀察可知,當直線過點時,有最大值,.故答案為:.【答案點睛】本題考查二次不等式組與平面區(qū)域、線性規(guī)劃,主要考查推理論證能力以及數(shù)形結(jié)合思想,屬基礎(chǔ)題.15.22【答案解析】

設(shè)雙曲線的右焦點為,根據(jù)周長為,計算得到答案.【題目詳解】設(shè)雙曲線的右焦點為.周長為:.當共線時等號成立,故,即實軸長為,.故答案為:;.【答案點睛】本題考查雙曲線周長的最值問題,離心率,實軸長,意在考查學生的計算能力和轉(zhuǎn)化能力.16.【答案解析】

由二項式系數(shù)性質(zhì)求出,由二項展開式通項公式得出常數(shù)項的項數(shù),從而得常數(shù)項.【題目詳解】由題意,.展開式通項為,由得,∴常數(shù)項為.故答案為:.【答案點睛】本題考查二項式定理,考查二項式系數(shù)的性質(zhì),掌握二項展開式通項公式是解題關(guān)鍵.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2).【答案解析】

(1)由正弦定理可得,再用余弦定理即可得到角C;(2),再利用求正弦型函數(shù)值域的方法即可得到答案.【題目詳解】(1)因為,所以.在中,由正弦定理得,所以,即.在中,由余弦定理得,又因為,所以.(2)由(1)得,在中,,所以.因為,所以,所以當,即時,有最大值1,所以的最大值為.【答案點睛】本題考查正余弦定理解三角形,涉及到兩角差的正弦公式、輔助角公式、向量數(shù)量積的坐標運算,是一道容易題.18.(1)證明見解析;(2).【答案解析】

(1)證明,得到平面,得到證明.(2)以點為坐標原點,建立如圖所示的空間直角坐標系,平面的一個法向量為,平面的一個法向量為,計算夾角得到答案.【題目詳解】(1)因為四邊形是菱形,且,所以是等邊三角形,又因為是的中點,所以,又因為,,所以,又,,,所以,又,,所以平面,所以,又因為是菱形,,所以,又,所以平面,所以.(2)由題意結(jié)合菱形的性質(zhì)易知,,,以點為坐標原點,建立如圖所示的空間直角坐標系,則,,,,,設(shè)平面的一個法向量為,則:,據(jù)此可得平面的一個法向量為,設(shè)平面的一個法向量為,則:,據(jù)此可得平面的一個法向量為,,平面與平面所成銳二面角的余弦值.【答案點睛】本題考查了線線垂直,二面角,意在考查學生的計算能力和空間想象能力.19.(1);(2).【答案解析】

(1)根據(jù)離心率以及,即可列方程求得,則問題得解;(2)設(shè)直線方程為,聯(lián)立橢圓方程,結(jié)合韋達定理,根據(jù)題意中轉(zhuǎn)化出的,即可求得參數(shù),則三角形面積得解.【題目詳解】(1)設(shè),由題意可得.因為是的中位線,且,所以,即,因為進而得,所以橢圓方程為(2)由已知得兩邊平方整理可得.當直線斜率為時,顯然不成立.直線斜率不為時,設(shè)直線的方程為,聯(lián)立消去,得,所以,由得將代入整理得,展開得,整理得,所以.即為所求.【答案點睛】本題考查由離心率求橢圓的方程,以及橢圓三角形面積的求解,屬綜合中檔題.20.(1)見解析;(2)見解析.【答案解析】

(1)結(jié)合基本不等式可證明;(2)利用基本不等式得,即,同理得其他兩個式子,三式相加可證結(jié)論.【題目詳解】(1)∵,∴,當且僅當a=b=c等號成立,∴;(2)由基本不等式,∴,同理,,∴,當且僅當a=b=c等號成立∴.【答案點睛】本題考查不等式的證明,考查用基本不等式證明不等式成立.解題關(guān)鍵是發(fā)現(xiàn)基本不等式的形式,方法是綜合法.21.(1)選取方案二更合適;(2)【答案解析】

(1)可以預(yù)見,2019年的紙質(zhì)廣告收入會接著下跌,前四年的增長趨勢已經(jīng)不能作為預(yù)測后續(xù)數(shù)據(jù)的依據(jù),而后5年的數(shù)據(jù)得到的相關(guān)系數(shù)的絕對值,所以有的把握認為與具有線性相關(guān)關(guān)系,從而可得結(jié)論;(2)求得購買電子書的概率為,只購買紙質(zhì)書的概率為,購買電子書人數(shù)多于只購買紙質(zhì)書人數(shù)有兩種情況:3人購買電子書,2人購買電子書一人只購買紙質(zhì)書,由此能求出購買電子書人數(shù)多于只購買紙質(zhì)版本人數(shù)的概率.【題目詳解】(1)選取方案二更合適,理由如下:①題中介紹了,隨著電子閱讀的普及,傳統(tǒng)紙媒受到了強烈的沖擊,從表格中的數(shù)據(jù)中可以看出從2014年開始,廣告收入呈現(xiàn)逐年下降的趨勢,可以預(yù)見,2019年的紙質(zhì)廣告收入會接著下跌,前四年的增長趨勢已經(jīng)不能作為預(yù)測后續(xù)數(shù)據(jù)的依據(jù).②相關(guān)系數(shù)越接近1,線性相關(guān)性越強,因為根據(jù)9年的數(shù)據(jù)得到的相關(guān)系數(shù)的絕對值,我們沒有理由認為與具有線性相關(guān)關(guān)系;而后5年的數(shù)據(jù)得到的相關(guān)系數(shù)的絕對值,所以有的把握認為與具有線性相關(guān)關(guān)系.(2)因為在該網(wǎng)站購買該書籍的大量讀者中,只購買電子書的讀者比例為,紙質(zhì)版本和電子書同時購買的讀者比例為,所以從該網(wǎng)站購買該書籍的大量讀者中任取一位,購買電子書的概率為,只購買紙質(zhì)書的概率為,購買電子書人數(shù)多于只購買紙質(zhì)書人數(shù)有兩種情況:3人購買電子書,2人購買電子書一人只購買紙質(zhì)書.概率為:.【答案點睛】本題主要考查最優(yōu)方案的選擇,考查

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論