




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
..基于AHP法和BP神經(jīng)網(wǎng)絡的商業(yè)銀行客戶信用評估模型美國次貸危機和希臘主權(quán)債務危機使人們對次貸風險的防范意識有了更進一步的增強,特別是對金融衍生產(chǎn)品創(chuàng)新中風險度量、風險控制甚至風險管理的理論和方法進行了深層次全方位的審視和思考.毫無疑問,次貸風險的防范應該從信貸源頭即商業(yè)銀行客戶開始.商業(yè)銀行對客戶的信用評估是銀行貸款的核心內(nèi)容,對銀行客戶的信用等級評估是否合理、科學、準確關(guān)系著銀行貸款承擔風險的大小.因此,準確評價客戶信用對銀行來說至關(guān)重要.商業(yè)銀行客戶基數(shù)大,屬性多,而且不同客戶有著其各自不同的特點,銀行不可能依次對每一個用戶進行分析來確定其信用程度,這在時間、人力以及效率等方面都是不可取也是不現(xiàn)實的,那么銀行應該按照一種特定的指標體系在擁有客戶登記表的情況下對客戶進行信用評估,這種特定的體系就是本文將要提出的基于AHP法和BP神經(jīng)網(wǎng)絡的商業(yè)銀行客戶信用評估模型.問題分析商業(yè)銀行信貸最關(guān)心的是客戶的信用程度和償還能力以及在此基礎上所能獲得的最大利潤問題,銀行在評估客戶信用程度時,是基于客戶所提交的客戶登記表來進行的,比如年齡、職業(yè)、學歷、月收入、信用額度、信用歷史等都是評估客戶的要素.根據(jù)客戶信息,銀行在借貸時自然更偏重于那些職業(yè)較好、收入較高、信用歷史較好的客戶,但是這類客戶很可能學歷較低、信用額度偏大,這使得銀行很難判斷其真正的信用程度.因此,為了更加公正、客觀的評估每個客戶的信用程度,銀行首先應該對客戶所提交的客戶登記表里的信息資料進行初步評分,基于對現(xiàn)實的考慮,在本文中,假設銀行主要對客戶的24項基本資料進行評分,也就是說客戶的信用程度就是通過這24項評估指標所建立起來的〔如圖1所示[1].考察這24項指標,按先后順序編號為,其中前9項決定客戶的特征,中間8項決定客戶的償還能力,最后7項決定客戶的信用狀況,由圖1可知,銀行對客戶的信用程度的評估就是基于這3大項的加權(quán)所得.根據(jù)BP<全稱為BackPropagation>神經(jīng)網(wǎng)絡的算法,銀行可采用大量的數(shù)據(jù)進行訓練學習,使各個分量的權(quán)重最后趨于穩(wěn)定,然后以此來計算客戶的信用程度.由于在現(xiàn)實中很難找到大量、準確、可靠的數(shù)據(jù)來完成訓練學習這個過程,因此,為了避免BP神經(jīng)網(wǎng)絡算法在初始化時采用隨機數(shù)取值所帶來的較大誤差,本文首先采用層次分析法〔AnalyticHierarchyProcess簡稱AHP對24小項以及3大項的權(quán)重進行計算,確定初始化數(shù)據(jù),然后再利用BP神經(jīng)網(wǎng)絡算法進行訓練學習.圖1商業(yè)銀行客戶信用評估指標體系商業(yè)銀行客戶信用評估指標體系Z年齡性別文化程度職業(yè)婚姻狀況健康狀況是否本地戶口住宅性質(zhì)本地居住時間客戶特征商業(yè)銀行客戶信用評估指標體系Z年齡性別文化程度職業(yè)婚姻狀況健康狀況是否本地戶口住宅性質(zhì)本地居住時間客戶特征個人財產(chǎn)家庭月收入活期存款余額分期付款占收入的比重工作年限存儲帳戶余額分期付款計劃其他借貸情況償還能力銀行卡記錄信用歷史代發(fā)工資情況信用額度持卡時間持卡消費情況擔保情況信用狀況黃、橙、紅5種顏色表示客戶從高到低的信用程度[1].綠色:表示該客戶信用程度高,不必擔憂其會發(fā)生不按期償還貸款的情況.藍色:表示該客戶信用程度較高,只要在還款期限之前進行適當提醒該用戶就能保證按時還款.黃色:表示該客戶信用程度一般,只要及時催促,就能保證其按時還款.橙色:表示客戶信用程度較低,為了保證客戶按時還款,應該加強與用戶之間的聯(lián)系,在借貸時也要適當進行決策.紅色:表示該用戶信用程度差,銀行在借貸時應該考慮是否要對其進行貸款.模型的假設分別對AHP法和BP神經(jīng)網(wǎng)絡算法中所涉及到的變量以及其他因素進行假設.1.AHP算法所涉及到的比較矩陣是根據(jù)Saaty等人提出來的1-9尺度法進行度量的,在具體的矩陣擬定中,對人為因素所造成的誤差忽略不計.2.基于現(xiàn)實以及計算考慮,在商業(yè)銀行客戶信用評估指標體系中,本文僅選取24項,其余指標不予考慮,設分別表示客戶登記表中的24小項的分值,在實際的銀行信貸過程中,只要客戶填寫了客戶登記表,那么這24項的值就隨之確定.3.用表示各個小項所屬的大項,分別為客戶特征、償還能力以及信用狀況;用Z表示客戶的信用程度.4.在BP神經(jīng)網(wǎng)絡結(jié)構(gòu)中,假定輸出單元的閾值為0.5.基于商業(yè)銀行客戶登記表中的屬性評分標準<按1-5之間的整數(shù)打分,分數(shù)越高,表示信用卡持有者該屬性表現(xiàn)越好>,本文將根據(jù)最后所求得的Z值的區(qū)間[0,1]將其劃分為5個小區(qū)間,即[0,0.2>,[0.2,0.4>,[0.4,0.6>,[0.6,0.8>,[0.8,1.0],從低到高分別代表紅、橙、黃、藍、綠五個等級,根據(jù)最后所求Z值落入的區(qū)間來確定該客戶的信用等級.模型的建立用AHP法獲得BP神經(jīng)網(wǎng)絡算法的初始權(quán)值AHP法是將定性分析和定量計算相結(jié)合的一種綜合計算方法,可將決策問題分為三個層次,即最上層、中間層和最下層,其分別為目標層、準則層和方案層,在具體問題中,具有廣泛的實用性.在AHP法中,為了確定同一層次間各因素對上層影響所占的比重,下面我們將引入一種比較科學合理的比較尺度,即尺度法[3].比較尺度:在比較兩個不同性質(zhì)的因素和對于上層因素的影響時,為了使得到的數(shù)據(jù)科學合理,本文采用Saaty等人提出來的尺度法,即尺度的取值范圍為及其互反數(shù),如下表1.尺度含義1和的影響相同3比的影響稍強5比的影響強7比的影響明顯地強9比的影響絕對地強2,4,6,8比的影響之比在上述兩個相鄰等級之間比的影響之比與上相反〔"強"改為"弱"表1尺度的含義表基于上述的比較尺度,以及參考了銀行在實際信貸過程中考慮因素的重要性,本文擬定以下比較矩陣來表示在客戶特征、償還能力、信用狀況中,商業(yè)銀行信用評估各指標之間的相對重要性,具體圖表如下:1212411154145786314165812413153521314561111231112111表2客戶特征中各指標的比較矩陣1362413171714121321318261211281252371141表3償還能力中各指標的比較矩陣162351317561431142211611151212341表4信用狀況中各指標的比較矩陣相應地,本文同樣得到了客戶特征、償還能力、信用狀況這三個大指標之間的相對重要性比較矩陣,以此來確定商業(yè)銀行客戶信用評估指標中各主要元素的權(quán)重.z131241表5評估體系中的比較矩陣2.模型算法設計及實現(xiàn)2.1BP神經(jīng)網(wǎng)絡結(jié)構(gòu)設計BP神經(jīng)網(wǎng)絡算法是由一個輸入層、一個或多個隱含層和一個輸出層組成,在本文中,與之對應的分別是AHP算法中的方案層、準則層和目標層.實驗證明,三層的BP神經(jīng)網(wǎng)絡結(jié)構(gòu)應用最為廣泛.因此,本文也采用了典型的三層BP神經(jīng)網(wǎng)絡結(jié)構(gòu)[4],其中輸入層節(jié)點數(shù)為24,分別對應客戶信用評估的24個指標,輸出層節(jié)點數(shù)為1,表示商業(yè)銀行客戶信用程度.經(jīng)驗顯示,較好的隱含層節(jié)點數(shù)應介于輸入節(jié)點和輸出節(jié)點數(shù)量之和的50%~70%之間[6],本文通過固定樣本針對不同隱含層節(jié)點數(shù)進行訓練,權(quán)衡運行效率、訓練次數(shù)和網(wǎng)絡總誤差,最終確定隱含層節(jié)點數(shù)為3,如圖2所示.圖2三層BP神經(jīng)網(wǎng)絡結(jié)構(gòu)圖以三層為例,令為網(wǎng)絡輸入,即為各個指標的評價值,為隱含層輸出,為網(wǎng)絡的實際輸出,即對信用風險的評價值.其中,輸入層節(jié)點到隱含層節(jié)點的權(quán)重為,而隱含層節(jié)點到輸出層節(jié)點的權(quán)重為,用和分別表示輸出單元和隱含單元的閾值,則:<1><2>其中,<3>2.2BP算法的實現(xiàn)步驟模型算法設計根據(jù)BP神經(jīng)網(wǎng)絡和AHP算法的特征,建立改進的BP神經(jīng)網(wǎng)絡算法[1],如下圖3所示.圖3改進的BP神經(jīng)網(wǎng)絡算法結(jié)構(gòu)流程圖模型算法的實現(xiàn)模型算法的實現(xiàn)步驟如下:<1>傳遞函數(shù)的確定[4].傳遞函數(shù)是反映下層輸入對上層節(jié)點刺激脈沖強度的函數(shù),又稱刺激函數(shù),一般取為<0,1>內(nèi)連續(xù)取值Sigmoid函數(shù):<3>誤差計算模型是反映神經(jīng)網(wǎng)絡期望輸出與計算輸出之間誤差大小的函數(shù).設第j個單元節(jié)點輸出的誤差為,則總誤差為:<4>其中,是第j個節(jié)點的期望輸出值,是第j個節(jié)點的實際輸出值.<2>參數(shù)確定[1].首先依據(jù)Saaty等人提出的1-9尺度法構(gòu)造比較矩陣、、和.通過比較矩陣最大特征根和特征向量的和法算法[3],求得各比較矩陣的最大特征根和特征向量.和法算法:a.將A的每一列向量歸一化得<5>b.對按行求和得<6>c.將歸一化<7>而即為所求特征向量.d.計算,作為最大特征根的近似值.而即為所求權(quán)重向量.由于通過AHP法所得到的結(jié)果具有很好的一致性,因此參數(shù)的改變對運算結(jié)果不會有太大的影響.<3>初始化.將樣本計算器p和訓練次數(shù)計數(shù)器q都置為1,誤差E置為0.為了更加精確的得到從輸入層到隱含層的權(quán)重以及從隱含層到輸出層的權(quán)重,本文首先采用AHP法對權(quán)重和進行了初步確定,從而避免了常規(guī)BP神經(jīng)網(wǎng)絡算法采用隨機數(shù)進行初始化所帶來的誤差,既縮短了BP算法對樣本訓練學習的周期,又提高了計算結(jié)果的精確度.<4>訓練學習.神經(jīng)網(wǎng)絡的訓練學習的過程就是對樣本各權(quán)重進行調(diào)整并使其趨于穩(wěn)定的過程,原則是使誤差不斷減小.訓練學習過程如下:<8><9><10>其中,為期望輸出值,為學習率,于<0,1>間取值,是為了保證BP算法的收斂性,所以,采用上述優(yōu)化方法來確定.為動量因子,是為了避免樣本訓練時BP算法陷于局部極小點,取0<<<1;為期望輸出與實際輸出之間的誤差.對于每一個輸入的樣本,計算相應的和,得到權(quán)值的調(diào)整公式:<11><12>在和的誤差達到要求的精度時,算法停止,訓練學習過程結(jié)束.<5>網(wǎng)絡誤差.計算網(wǎng)絡輸出誤差,設共有個訓練樣本,網(wǎng)絡對應不同的樣本有不同的誤差,用其均方根<13>作為網(wǎng)絡的總誤差.其中t為計數(shù)器.每對樣本完成一次訓練學習,都會檢查總誤差是否達到精度要求或者訓練次數(shù)是否達到上限值,若是,則停止,否則轉(zhuǎn)到<4>,直到符合要求為止.模型的求解及應用1.樣本訓練基于AHP法和BP神經(jīng)網(wǎng)絡算法的基本思想而建立的BP神經(jīng)網(wǎng)絡客戶信用等級評估模型,其輸入層為24個神經(jīng)元,分別對應客戶信用評估的24項指標,根據(jù)這24項指標,確定了影響客戶信用評估的三大要素,即客戶特征、償還能力和信用狀況,最終由這三大指標確定客戶的信用程度.本文隨機抽取了10份商業(yè)銀行客戶登記表作為研究對象,并對其中的定性指標進行了公正合理的打分,每個指標打分的范圍為[1,5]之間的整數(shù).即可得到一個樣本矩陣:由AHP法即可得到分別對應的權(quán)重向量:[0.068966,0.020690,0.179310,0.289655,0.117241,0.0206897,0.027568,0.068966,0.020690]T[0.150442,0.212389,0.061947,0.203540,0.026549,0.176991,0.115044,0.053097]T[0.211765,0.341176,0.094118,0.105882,0.117650,0.105882,0.129412]T[0.083333,0.500000,0.416667]T將其作為初始化數(shù)據(jù),在BP神經(jīng)網(wǎng)絡結(jié)構(gòu)中進行訓練學習,最終可求得:Z=[0.564539,0.563337,0.363566,0.846153,0.363095,0.736227,0.463543,0.163985,0.713585,0.413209]T即為這10個客戶的最終得分.2.評估分析基于上述擬定的評估等級,即可確定出這10名客戶的信用等級,如表6所示:客戶Z值誤差信用等級客戶10.5645390.000106黃色客戶20.5633370.000089黃色客戶30.3635660.000092橙色客戶40.8461530.000096綠色客戶50.3630950.000086橙色客戶60.7362270.000095藍色客戶70.4635430.000091黃色客戶80.1639850.000098紅色客戶90.7135850.000092藍色客戶100.4132090.000087黃色表6客戶信用等級表為了便于銀行對數(shù)據(jù)進行統(tǒng)計分析,現(xiàn)將表6中各個客戶的信息用折線圖以及柱狀圖的形式給出.圖4客戶信用程度圖示黃黃藍橙藍橙綠紅綠紅圖5客戶人數(shù)與信用等級圖示以上就是隨機抽取的10份商業(yè)銀行客戶登記表所對應的客戶信用程度,從折線圖與柱狀圖來看,信用程度處于一般信用的人最多,其次是較高信用與較低信用,而高信用與低信用的人數(shù)相對較少.這僅是對10份數(shù)據(jù)進行訓練統(tǒng)計的結(jié)果,由于基數(shù)太小,可能不具代表性,但此模型是在AHP法和BP神經(jīng)網(wǎng)絡的共同作用下建立起來的,具有一定的科學合理性.另外,該模型評估誤差小,計算速度快,從這方面來說,作為商業(yè)銀行客戶信用程度的評估依據(jù),本模型依然具有較好的實用價值.參考文獻:[1]盧雯嘉,栗秋華,周林,李楊,馮克
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 殘聯(lián)安置協(xié)議書
- 車輛交割協(xié)議書模板
- 實習協(xié)議與保密協(xié)議
- 國有企業(yè)借款合同
- 公司股份制合同協(xié)議書
- 環(huán)境工程污水處理技術(shù)應用試題集
- 商務往來文書與合同樣本集
- 比賽授權(quán)協(xié)議書
- 產(chǎn)品授權(quán)經(jīng)銷協(xié)議書
- 無線接口協(xié)議書
- 企業(yè)數(shù)字化轉(zhuǎn)型的國外研究現(xiàn)狀共3篇
- T-GDWCA 0033-2018 耳機線材標準規(guī)范
- NB/T 10533-2021采煤沉陷區(qū)治理技術(shù)規(guī)范
- GA/T 1068-2015刑事案件命名規(guī)則
- 主治醫(yī)師聘用合同
- 2021年四川綿竹高發(fā)投資有限公司招聘筆試試題及答案解析
- 建設工程消防驗收備案抽查復查申請表
- 水費計算、水權(quán)與水價課件
- 思想道德與法治課件:第六章 第一節(jié) 社會主義法律的特征和運行
- 61850報文解析-深瑞版-131016
- 江西新定額2017土建定額說明及解釋
評論
0/150
提交評論