彈性力學(xué)課件32_第1頁
彈性力學(xué)課件32_第2頁
彈性力學(xué)課件32_第3頁
彈性力學(xué)課件32_第4頁
彈性力學(xué)課件32_第5頁
已閱讀5頁,還剩41頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2.9SOLUTIONOFPLANEPROBLEMINTERMSOFDISPLACEMENTForthesolutionofanelasticityproblem,wecanproceedinthreedifferentways:1.Takethedisplacementcomponentsasthebasicunknownfunctions,formulateasystemofdifferentialequations

andboundaryconditions

containingthedisplacementcomponentsonly,solvefortheseunknownfunctionsandtherebyfindthestraincomponentsbythegeometricalequationsandthenthestresscomponentsbythephysicalequations.

2.Takethestresscomponentsasthebasicunknownfunctions,formulateasystemofdifferentialequationsandboundaryconditionscontainingthestresscomponentsonly,solvefortheseunknownfunctionsandtherebyfindthestraincomponentsbythephysicalequationsandthenthedisplacementcomponentsbythegeometricequation.3.Takesomeofthedisplacementcomponentsandalsosomeofthestresscomponentsasthebasicunknownfunctions,formulateasystemofdifferentialequationsandboundaryconditionscontainingthestresscomponentsonly,solvefortheseunknownfunctionsandtherebyfindtheotherunknownfunctions.Nowweproceedtoformulatethedifferentialequationsandboundaryconditionsforsolutionofaplaneproblemintermsofdisplacements.Thegeometricequations:

1.Thedifferentialequations

Thephysicalequations(planestressproblem)SubstitutionofgeometricEotheseequationsNow,usingtheserelationsinequilibriumequationsThedifferentialequationsforthesolutionoftheproblemintermsofdisplacements.

2.Boundaryconditions

lx+mxy=Xmy+lxy=YStressboundaryconditionsofaplaneproblemWeobtainthestressboundaryconditionsoftheproblemintermsofdisplacements:Tosumup,Thedisplacecomponentsu(x,y),v(x,y)inaplanestressproblemmustsatisfythroughoutthebodyconsideredandalsosatisfyonthesurfaceofthebody.Foraplanestrainproblem,itisnecessaryinaboveequations.2.10SOLUTIONOFPLANEPROBLEMINTERMSOFSTRESSESThetwodifferentialequationsofequilibriumcontainthestresscomponentsonlyandmaybeusedfortheirsolution.Thethirddifferentialequationcanbeobtainedfromthegeometricalandphysicalequationsbyeliminatingthedisplacementcomponentstherein.ThegeometricalequationsofaplaneproblemareAddingthesecondderivativeofxwithrespecttoyandthesecondderivativeofywithrespecttox,wegetThecompatibilityequationforstrainThecompatibilityequationforstrainmustbesatisfiedbythestraincomponentsx,yandxytoensuretheexistenceofsingle-valuedcontinuousfunctionsuandvconnectedwiththestraincomponentsbythegeometricalequations.若所選選的x、y和xy不滿足足這個個方程程,那那么,,由幾幾何方方程中中的任任意兩兩個所所求出出的位位移分分量,,將不不滿足足第三三個方方程例如選x=0,y=0,xy=cxy

不滿足相容方程由此應(yīng)應(yīng)變求求位移移第三個個方程程不能能滿足足,所所求u,v不存在在Byusingphysicalequations,thecompatibilityequationcanbetransformedintoarelationbetweenthestresscomponents.Substitutionofthephysicalequationsinto

Foraplanestressproblem

Totransformthisequationintoadifferentformmoresuitableforuse,weeliminatetheterminvolvingxybyusingthedifferentialequationsofequilibrium.Differentiatingthefirstequationwithrespecttoxandthesecondwithrespecttoy,addingthemupandnotingthatxy=yx,wegetSubstitutingthisintothecompatibilityequationandperformingsomesimplification,weobtainthecompatibilityequationintermsofstresses.Foraplanestrainproblem,anequationsimilartoaboveequationmaybeobtainedsimplybyTheresultisThus,1.Inthesolutionofaplaneproblemintermsofstresses,thestresscomponentsmustsatisfythedifferentialequationsofequilibriumandthecompatibilityequation.Besides,theymustsatisfythestressboundaryconditions.2.Sincethedisplacementboundaryconditionscanbeexpressedneitherintermsofstresscomponentsnorintermsoftheirderivativeswithrespecttothecoordinates,displacementboundaryproblemsandmixedboundaryproblemscannotbesolvedintermsofstresses.Inthesolutionofelasticityproblems,itisnecessarytodistinguishbetweensimplyconnectedbodiesandmultiplyconnectedones.Abodyissaidtobesimplyconnectedifanarbitraryclosedcurvelyinginthebodycanbeshrunktoapoint,bycontinuouscontraction,withoutpassingoutsideitsboundaries.Solidblocksandhollowspheresareexamplesofsimplyconnectedbodies.Otherwise,thebodywillbesaidtobemultiplyconnected.Ringsandhollowcylindersareexamplesofmultiplyconnectedones.Inthecaseofmultiplyconnectedbody,theremightbesomearbitraryfunctionsleadingtomulti-valueddisplacements,whichareimpossibleinacontinuousbody.Then,wehavetoconsidertheconditionofsingle-valueddisplacementstodeterminethestresses.Inplaneproblems,however,wemayalsobrieflydefineasimplyconnectedbodyasonewithonlyonecontinuousboundaryandamultiplyconnectedbodyasonewithtwoormoreboundaries.2.11CASEOFCONSTANTBODYFORCESInmanyengineeringproblems,thebodyforcesareconstant,I.e.,thecomponentsXandYdonotvarywithcoordinatesthroughoutthevolumeofthewholebody.(thegravityforces,theinertiaforces)Ontheconditionofconstantbodyforces,thecompatibilityequationswillreducetothehomogeneousdifferentialequationNow,thedifferentialequationsofequilibriumandthestressboundaryconditions,aswellasthecompatibilityequations,donotcontainanyelasticconstantandarethesameforbothkindsofplaneproblems.Hence,inastressboundaryproblemforasimplyconnectedbodywithacertainboundaryandsubjectedtocertainexternalforces,thestresscomponentsx,y,xywillbeindependentoftheelasticpropertiesofthebodyandhavethesamedistributioninbothplanestressconditionandplanestraincondition.Thisconclusionisveryhelpfulintheexperimentalanalysisofthestressesinastructureoritselements.(1)可將將某種材料料,某種狀狀態(tài)下所求求的應(yīng)力分分量的結(jié)論論用于其他他材料或其其他狀態(tài)((邊界條件件,外荷載載相同)(2)Wemayuseamodelinplanestresscondition(athinslice)insteadofoneinplanestraincondition(alongcylindricalbody).(1)Wemayuseanymodelmaterialconvenientforstressmeasurementinsteadofthestructurematerialonwhichthemeasurementmightbeimpossible.(3)Beside,inthecaseofastressboundaryproblemforsimplyconnectedbodiessubjectedtoconstantbodyforces,astressanalysisfortheactionofthebodyforcesmaybeconvertedtotheanalysisfortheactionofsurfaceforces.Thestresscomponentsx,y,xyaredeterminedbythedifferentialequations(a)(b)andtheboundaryconditionsl(x)s+m(xy)s=Xm(y)s+l(xy)s=YNow,wesetx=’x-Xx,y=’y-Yy,xy=’xyandproceedtofindthedifferentialequationsandboundaryconditionswhichmustbesatisfiedby’x,’y,’xy.(c)Substitutetheminto(a),(b)and(c)andobtainl(’x)s+m(’xy)s=X+lXxm(’y)s+l(’xy)s=Y+mYyWeseethatthedifferentialequationsandboundaryconditionstobesatisfiedby’x,’y,’xymustbethesameasthoseinaproblemwithzerobodyforcesandwithsurfaceforcecomponentsXandYincreasedbylXxandmYy,respectively.Thisconclusionsuggestsaprocessforthesolutionofx,y,xy:NeglectthebodyforcesandapplyfictitioussurfaceforcecomponentsX”=lXxandY”=mYyinadditiontotheoriginalsurfaceforces;Solveforthestresscomponents,’x,’y,’xy,byappropriatemethods;Findx=’x-Xx,y=’y-Yy,xy=’xy2.12AIRY’’SSTRESSFUNCTION.INVERSEMETHODANDSEMI-INVERSEMETHODisnonhomogeneousand,therefore,itsgeneralsolutionmaybeexpressedasthesumofaparticularsolutionandthegeneralsolutionofthehomogeneoussystemWhenbodyforcesareconstant,theparticularsolutionmaybetakenasx=-Xx,y=-Yy,xy=0orx=0,y=0,xy=-Xy-Yxorx=-Xx-Yy,y=-Xx-Yy,xy=0Whichsatisfyequations(1)(2)Accordingtodifferentialcalculus,for(1),thereexistsacertainfunctionA(x,y)sothat:RewriteSimilarly,(2)ensurestheexistenceofanotherfunctionB(x,y)sothat:Sincexy=yx,wehaveWhichensurestheexistenceofstillanotherfunction(x,y)sothatWeobtainthegeneralsolutionofhomogeneousequations:Now,thesuperpositionofthegeneralsolutionwiththeparticularsolutionyieldsthefollowingcompletesolution:Thefunction(x,y)isknownasthestressfunctionforplaneproblems,ortheAiry’sstressfunction.Inorderforthestresscomponentstosatisfythecompatibilityequationaswell,thestressfunctionmustsatisfyacertainequation.or

2(Xx)=

2(Yy)=0intheconditionofconstantbodyforceorbesimplywrittenas:Whenbodyforcesarenotconsidered,thesolutionwillreducetoThus:inthesolutionofplaneproblemsintermsofstresses,whenthebodyforcesareconstant,itisonlytosolveforthestressfunctionfromthesingledifferentialequationandthenfindthestresscomponentsbyButthesestresscomponentsmustsatisfythestressboundarycondition.Inthecaseofmultiplyconnectedbodies,theconditionofsingle-valueddisplacementsmustbeinspectedinaddition.Tosolvethepartialdifferentialequationsofelasticitytogetherwiththegivenboundaryconditions,thedirectmethodofsolutionisusuallyimpossible.Wehavetousetheinversemethodorthesemi-inversemethod.Intheinversemethod,somefunctionssatisfyingthedifferentialequationsaretakenandexaminedtoseewhatboundaryconditionsthesefunctionswillsatisfyandtherebytoknowwhatproblemstheycansolve.InthecaseofsolutionbyAiry’sstressfunction,weselectsomefunctionsatisfyingthecompatibilityequation,findthestresscomponents,andthenfindthesurfaceforcecomponents.Inthisway,weidentifytheproblemwhichthestressfunctioncansolve.Inthesemi-inversemethod,weassumethesolutionforthestressesordisplacementsinagivenproblem,basedontheloadingconditionandboundaryconditionsoftheproblem,andthenproceedtoshowthatallthedifferentialequationsandboundaryconditionsaresatisfied.InthecaseofsolutionbyAiry’sstressfunction,wemakeassumptionsregardingthestresscomponents,findthecorrespondingstressfunctionandproceedtoshowthatthestresscomponentsderivedfromthisstressfunctioncansatisfyalltheboundaryconditions.Ifsomeoftheboundaryconditionsarenotsatisfied,thenwehavetomodifytheassumptionsmade.本章小結(jié)1、平面問題平面應(yīng)力問題和平面應(yīng)變問題2、平面問題題的基本未知知量:x、y、xy、x、y、xy、u、v3、平面問題題的基本方程程和邊界條件件:平衡微分方程:幾何方程:物理方程:平面應(yīng)力問題:平面應(yīng)變問題題邊界界條條件件::位位移移邊邊界界條條件件和和應(yīng)應(yīng)力力邊邊界界條條件件lx+mxy=Xmy+lxy=Y應(yīng)力邊界條件4、、平平面面問問題題的的求求解解方方法法::按按位位移移求求解解;;按按應(yīng)應(yīng)力力求求解解按位位移移求求解解,,要要求求位位移移滿滿足足拉拉密密方方程程,,在在邊邊界

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論