廣州市番禺區(qū)重點(diǎn)名校2022年中考數(shù)學(xué)仿真試卷含解析_第1頁(yè)
廣州市番禺區(qū)重點(diǎn)名校2022年中考數(shù)學(xué)仿真試卷含解析_第2頁(yè)
廣州市番禺區(qū)重點(diǎn)名校2022年中考數(shù)學(xué)仿真試卷含解析_第3頁(yè)
廣州市番禺區(qū)重點(diǎn)名校2022年中考數(shù)學(xué)仿真試卷含解析_第4頁(yè)
廣州市番禺區(qū)重點(diǎn)名校2022年中考數(shù)學(xué)仿真試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2021-2022中考數(shù)學(xué)模擬試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.對(duì)于一組統(tǒng)計(jì)數(shù)據(jù):1,6,2,3,3,下列說(shuō)法錯(cuò)誤的是()A.平均數(shù)是3 B.中位數(shù)是3 C.眾數(shù)是3 D.方差是2.52.在同一平面內(nèi),下列說(shuō)法:①過(guò)兩點(diǎn)有且只有一條直線;②兩條不相同的直線有且只有一個(gè)公共點(diǎn);③經(jīng)過(guò)直線外一點(diǎn)有且只有一條直線與已知直線垂直;④經(jīng)過(guò)直線外一點(diǎn)有且只有一條直線與已知直線平行,其中正確的個(gè)數(shù)為(

)A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)3.下列運(yùn)算正確的是()A.(a﹣3)2=a2﹣9 B.()﹣1=2 C.x+y=xy D.x6÷x2=x34.如圖,矩形ABCD的邊長(zhǎng)AD=3,AB=2,E為AB的中點(diǎn),F(xiàn)在邊BC上,且BF=2FC,AF分別與DE、DB相交于點(diǎn)M,N,則MN的長(zhǎng)為()A. B. C. D.5.四組數(shù)中:①1和1;②﹣1和1;③0和0;④﹣和﹣1,互為倒數(shù)的是()A.①② B.①③ C.①④ D.①③④6.下列實(shí)數(shù)中,最小的數(shù)是()A. B. C.0 D.7.如圖是一次數(shù)學(xué)活動(dòng)課制作的一個(gè)轉(zhuǎn)盤,盤面被等分成四個(gè)扇形區(qū)域,并分別標(biāo)有數(shù)字6、7、8、1.若轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,轉(zhuǎn)盤停止后(當(dāng)指針恰好指在分界線上時(shí),不記,重轉(zhuǎn)),指針?biāo)竻^(qū)域的數(shù)字是奇數(shù)的概率為()A.12 B.14 C.18.如圖,在△ABC中,AB=AC,點(diǎn)D是邊AC上一點(diǎn),BC=BD=AD,則∠A的大小是().A.36° B.54° C.72° D.30°9.如圖,在中,面積是16,的垂直平分線分別交邊于點(diǎn),若點(diǎn)為邊的中點(diǎn),點(diǎn)為線段上一動(dòng)點(diǎn),則周長(zhǎng)的最小值為()A.6 B.8 C.10 D.1210.下圖是由八個(gè)相同的小正方體組合而成的幾何體,其左視圖是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在△ABC中,CA=CB,∠ACB=90°,AB=4,點(diǎn)D為AB的中點(diǎn),以點(diǎn)D為圓心作圓,半圓恰好經(jīng)過(guò)三角形的直角頂點(diǎn)C,以點(diǎn)D為頂點(diǎn),作90°的∠EDF,與半圓交于點(diǎn)E,F(xiàn),則圖中陰影部分的面積是____.12.如圖,等腰三角形ABC的底邊BC長(zhǎng)為4,面積是12,腰AB的垂直平分線EF分別交AB,AC于點(diǎn)E、F,若點(diǎn)D為底邊BC的中點(diǎn),點(diǎn)M為線段EF上一動(dòng)點(diǎn),則△BDM的周長(zhǎng)的最小值為_____.13.計(jì)算:|﹣3|+(﹣1)2=.14.如圖,在Rt△ABC中,∠B=90°,∠A=30°,以點(diǎn)A為圓心,BC長(zhǎng)為半徑畫弧交AB于點(diǎn)D,分別以點(diǎn)A、D為圓心,AB長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)E,連接AE,DE,則∠EAD的余弦值是______.15.點(diǎn)A(-2,1)在第_______象限.16.若點(diǎn)A(3,﹣4)、B(﹣2,m)在同一個(gè)反比例函數(shù)的圖象上,則m的值為.17.不等式組x-2>0①2x-6>2②三、解答題(共7小題,滿分69分)18.(10分)我校對(duì)全校學(xué)生進(jìn)傳統(tǒng)文化禮儀知識(shí)測(cè)試,為了了解測(cè)試結(jié)果,隨機(jī)抽取部分學(xué)生的成績(jī)進(jìn)行分析,現(xiàn)將成績(jī)分為三個(gè)等級(jí):不合格、一般、優(yōu)秀,并繪制成如下兩幅統(tǒng)計(jì)圖(不完整).請(qǐng)你根據(jù)圖中所給的信息解答下列問(wèn)題:(1)本次隨機(jī)抽取的人數(shù)是人,并將以上兩幅統(tǒng)計(jì)圖補(bǔ)充完整;(2)若“一般”和“優(yōu)秀”均被視為達(dá)標(biāo)成績(jī),則我校被抽取的學(xué)生中有人達(dá)標(biāo);(3)若我校學(xué)生有1200人,請(qǐng)你估計(jì)此次測(cè)試中,全校達(dá)標(biāo)的學(xué)生有多少人?19.(5分)已知:如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),△OAB的頂點(diǎn)A、B的坐標(biāo)分別是A(0,5),B(3,1),過(guò)點(diǎn)B畫BC⊥AB交直線y=-m(m>54)于點(diǎn)C,連結(jié)AC,以點(diǎn)A為圓心,AC為半徑畫弧交x軸負(fù)半軸于點(diǎn)D,連結(jié)AD(1)求證:△ABC≌△AOD.(2)設(shè)△ACD的面積為s,求s關(guān)于m的函數(shù)關(guān)系式.(3)若四邊形ABCD恰有一組對(duì)邊平行,求m的值.20.(8分)已知關(guān)于x的分式方程=2①和一元二次方程mx2﹣3mx+m﹣1=0②中,m為常數(shù),方程①的根為非負(fù)數(shù).(1)求m的取值范圍;(2)若方程②有兩個(gè)整數(shù)根x1、x2,且m為整數(shù),求方程②的整數(shù)根.21.(10分)已知AB是⊙O的直徑,弦CD與AB相交,∠BAC=40°.(1)如圖1,若D為弧AB的中點(diǎn),求∠ABC和∠ABD的度數(shù);(2)如圖2,過(guò)點(diǎn)D作⊙O的切線,與AB的延長(zhǎng)線交于點(diǎn)P,若DP∥AC,求∠OCD的度數(shù).22.(10分)某企業(yè)為杭州計(jì)算機(jī)產(chǎn)業(yè)基地提供電腦配件.受美元走低的影響,從去年1至9月,該配件的原材料價(jià)格一路攀升,每件配件的原材料價(jià)格y1(元)與月份x(1≤x≤9,且x取整數(shù))之間的函數(shù)關(guān)系如下表:月份x123456789價(jià)格y1(元/件)560580600620640660680700720隨著國(guó)家調(diào)控措施的出臺(tái),原材料價(jià)格的漲勢(shì)趨緩,10至12月每件配件的原材料價(jià)格y2(元)與月份x(10≤x≤12,且x取整數(shù))之間存在如圖所示的變化趨勢(shì):(1)請(qǐng)觀察題中的表格,用所學(xué)過(guò)的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關(guān)知識(shí),直接寫出y1與x之間的函數(shù)關(guān)系式,根據(jù)如圖所示的變化趨勢(shì),直接寫出y2與x之間滿足的一次函數(shù)關(guān)系式;(2)若去年該配件每件的售價(jià)為1000元,生產(chǎn)每件配件的人力成本為50元,其它成本30元,該配件在1至9月的銷售量p1(萬(wàn)件)與月份x滿足關(guān)系式p1=0.1x+1.1(1≤x≤9,且x取整數(shù)),10至12月的銷售量p2(萬(wàn)件)p2=﹣0.1x+2.9(10≤x≤12,且x取整數(shù)).求去年哪個(gè)月銷售該配件的利潤(rùn)最大,并求出這個(gè)最大利潤(rùn).23.(12分)如圖,已知點(diǎn)在反比例函數(shù)的圖象上,過(guò)點(diǎn)作軸,垂足為,直線經(jīng)過(guò)點(diǎn),與軸交于點(diǎn),且,.求反比例函數(shù)和一次函數(shù)的表達(dá)式;直接寫出關(guān)于的不等式的解集.24.(14分)A糧倉(cāng)和B糧倉(cāng)分別庫(kù)存糧食12噸和6噸,現(xiàn)決定支援給C市10噸和D市8噸.已知從A糧倉(cāng)調(diào)運(yùn)一噸糧食到C市和D市的運(yùn)費(fèi)分別為400元和800元;從B糧倉(cāng)調(diào)運(yùn)一噸糧食到C市和D市的運(yùn)費(fèi)分別為300元和500元.設(shè)B糧倉(cāng)運(yùn)往C市糧食x噸,求總運(yùn)費(fèi)W(元)關(guān)于x的函數(shù)關(guān)系式.(寫出自變量的取值范圍)若要求總運(yùn)費(fèi)不超過(guò)9000元,問(wèn)共有幾種調(diào)運(yùn)方案?求出總運(yùn)費(fèi)最低的調(diào)運(yùn)方案,最低運(yùn)費(fèi)是多少?

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、D【解析】

根據(jù)平均數(shù)、中位數(shù)、眾數(shù)和方差的定義逐一求解可得.【詳解】解:A、平均數(shù)為1+6+2+3+35B、重新排列為1、2、3、3、6,則中位數(shù)為3,正確;C、眾數(shù)為3,正確;D、方差為15×[(1-3)2+(6-3)2+(2-3)2+(3-3)2+(3-3)2故選:D.【點(diǎn)睛】本題考查了眾數(shù)、平均數(shù)、中位數(shù)、方差.平均數(shù)平均數(shù)表示一組數(shù)據(jù)的平均程度.中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻螅钪虚g的那個(gè)數(shù)(或最中間兩個(gè)數(shù)的平均數(shù));方差是用來(lái)衡量一組數(shù)據(jù)波動(dòng)大小的量.2、C【解析】

根據(jù)直線的性質(zhì)公理,相交線的定義,垂線的性質(zhì),平行公理對(duì)各小題分析判斷后即可得解.【詳解】解:在同一平面內(nèi),①過(guò)兩點(diǎn)有且只有一條直線,故①正確;②兩條不相同的直線相交有且只有一個(gè)公共點(diǎn),平行沒有公共點(diǎn),故②錯(cuò)誤;③在同一平面內(nèi),經(jīng)過(guò)直線外一點(diǎn)有且只有一條直線與已知直線垂直,故③正確;④經(jīng)過(guò)直線外一點(diǎn)有且只有一條直線與已知直線平行,故④正確,綜上所述,正確的有①③④共3個(gè),故選C.【點(diǎn)睛】本題考查了平行公理,直線的性質(zhì),垂線的性質(zhì),以及相交線的定義,是基礎(chǔ)概念題,熟記概念是解題的關(guān)鍵.3、B【解析】分析:根據(jù)完全平方公式、負(fù)整數(shù)指數(shù)冪,合并同類項(xiàng)以及同底數(shù)冪的除法的運(yùn)算法則進(jìn)行計(jì)算即可判斷出結(jié)果.詳解:A.(a﹣3)2=a2﹣6a+9,故該選項(xiàng)錯(cuò)誤;B.()﹣1=2,故該選項(xiàng)正確;C.x與y不是同類項(xiàng),不能合并,故該選項(xiàng)錯(cuò)誤;D.x6÷x2=x6-2=x4,故該選項(xiàng)錯(cuò)誤.故選B.點(diǎn)睛:可不是主要考查了完全平方公式、負(fù)整數(shù)指數(shù)冪,合并同類項(xiàng)以及同度數(shù)冪的除法的運(yùn)算,熟記它們的運(yùn)算法則是解題的關(guān)鍵.4、B【解析】

過(guò)F作FH⊥AD于H,交ED于O,于是得到FH=AB=1,根據(jù)勾股定理得到AF===,根據(jù)平行線分線段成比例定理得到,OH=AE=,由相似三角形的性質(zhì)得到=,求得AM=AF=,根據(jù)相似三角形的性質(zhì)得到=,求得AN=AF=,即可得到結(jié)論.【詳解】過(guò)F作FH⊥AD于H,交ED于O,則FH=AB=1.∵BF=1FC,BC=AD=3,∴BF=AH=1,F(xiàn)C=HD=1,∴AF===,∵OH∥AE,∴=,∴OH=AE=,∴OF=FH﹣OH=1﹣=,∵AE∥FO,∴△AME∽△FMO,∴=,∴AM=AF=,∵AD∥BF,∴△AND∽△FNB,∴=,∴AN=AF=,∴MN=AN﹣AM=﹣=,故選B.【點(diǎn)睛】構(gòu)造相似三角形是本題的關(guān)鍵,且求長(zhǎng)度問(wèn)題一般需用到勾股定理來(lái)解決,常作垂線5、C【解析】

根據(jù)倒數(shù)的定義,分別進(jìn)行判斷即可得出答案.【詳解】∵①1和1;1×1=1,故此選項(xiàng)正確;②-1和1;-1×1=-1,故此選項(xiàng)錯(cuò)誤;③0和0;0×0=0,故此選項(xiàng)錯(cuò)誤;④?和?1,-×(-1)=1,故此選項(xiàng)正確;∴互為倒數(shù)的是:①④,故選C.【點(diǎn)睛】此題主要考查了倒數(shù)的概念及性質(zhì).倒數(shù)的定義:若兩個(gè)數(shù)的乘積是1,我們就稱這兩個(gè)數(shù)互為倒數(shù).6、B【解析】

根據(jù)正實(shí)數(shù)都大于0,負(fù)實(shí)數(shù)都小于0,正實(shí)數(shù)大于一切負(fù)實(shí)數(shù),兩個(gè)負(fù)實(shí)數(shù)絕對(duì)值大的反而小,進(jìn)行比較.【詳解】∵<-2<0<,∴最小的數(shù)是-π,故選B.【點(diǎn)睛】此題主要考查了比較實(shí)數(shù)的大小,要熟練掌握任意兩個(gè)實(shí)數(shù)比較大小的方法.(1)正實(shí)數(shù)都大于0,負(fù)實(shí)數(shù)都小于0,正實(shí)數(shù)大于一切負(fù)實(shí)數(shù),兩個(gè)負(fù)實(shí)數(shù)絕對(duì)值大的反而?。?)利用數(shù)軸也可以比較任意兩個(gè)實(shí)數(shù)的大小,即在數(shù)軸上表示的兩個(gè)實(shí)數(shù),右邊的總比左邊的大,在原點(diǎn)左側(cè),絕對(duì)值大的反而?。?、A【解析】

轉(zhuǎn)盤中4個(gè)數(shù),每轉(zhuǎn)動(dòng)一次就要4種可能,而其中是奇數(shù)的有2種可能.然后根據(jù)概率公式直接計(jì)算即可【詳解】奇數(shù)有兩種,共有四種情況,將轉(zhuǎn)盤轉(zhuǎn)動(dòng)一次,求得到奇數(shù)的概率為:P(奇數(shù))=24=1【點(diǎn)睛】此題主要考查了幾何概率,正確應(yīng)用概率公式是解題關(guān)鍵.8、A【解析】

由BD=BC=AD可知,△ABD,△BCD為等腰三角形,設(shè)∠A=∠ABD=x,則∠C=∠CDB=2x,又由AB=AC可知,△ABC為等腰三角形,則∠ABC=∠C=2x.在△ABC中,用內(nèi)角和定理列方程求解.【詳解】解:∵BD=BC=AD,∴△ABD,△BCD為等腰三角形,設(shè)∠A=∠ABD=x,則∠C=∠CDB=2x.又∵AB=AC,∴△ABC為等腰三角形,∴∠ABC=∠C=2x.在△ABC中,∠A+∠ABC+∠C=180°,即x+2x+2x=180°,解得:x=36°,即∠A=36°.故選A.【點(diǎn)睛】本題考查了等腰三角形的性質(zhì).關(guān)鍵是利用等腰三角形的底角相等,外角的性質(zhì),內(nèi)角和定理,列方程求解.9、C【解析】

連接AD,AM,由于△ABC是等腰三角形,點(diǎn)D是BC的中點(diǎn),故,在根據(jù)三角形的面積公式求出AD的長(zhǎng),再根據(jù)EF是線段AC的垂直平分線可知,點(diǎn)A關(guān)于直線EF的對(duì)稱點(diǎn)為點(diǎn)C,,推出,故AD的長(zhǎng)為BM+MD的最小值,由此即可得出結(jié)論.【詳解】連接AD,MA∵△ABC是等腰三角形,點(diǎn)D是BC邊上的中點(diǎn)∴∴解得∵EF是線段AC的垂直平分線∴點(diǎn)A關(guān)于直線EF的對(duì)稱點(diǎn)為點(diǎn)C∴∵∴AD的長(zhǎng)為BM+MD的最小值∴△CDM的周長(zhǎng)最短故選:C.【點(diǎn)睛】本題考查了三角形線段長(zhǎng)度的問(wèn)題,掌握等腰三角形的性質(zhì)、三角形的面積公式、垂直平分線的性質(zhì)是解題的關(guān)鍵.10、B【解析】

解:找到從左面看所得到的圖形,從左面可看到從左往右三列小正方形的個(gè)數(shù)為:2,3,1.故選B.二、填空題(共7小題,每小題3分,滿分21分)11、π﹣1.【解析】

連接CD,作DM⊥BC,DN⊥AC,證明△DMG≌△DNH,則S四邊形DGCH=S四邊形DMCN,求得扇形FDE的面積,則陰影部分的面積即可求得.【詳解】連接CD,作DM⊥BC,DN⊥AC.∵CA=CB,∠ACB=90°,點(diǎn)D為AB的中點(diǎn),∴DC=AB=1,四邊形DMCN是正方形,DM=.則扇形FDE的面積是:=π.∵CA=CB,∠ACB=90°,點(diǎn)D為AB的中點(diǎn),∴CD平分∠BCA.又∵DM⊥BC,DN⊥AC,∴DM=DN.∵∠GDH=∠MDN=90°,∴∠GDM=∠HDN.在△DMG和△DNH中,∵,∴△DMG≌△DNH(AAS),∴S四邊形DGCH=S四邊形DMCN=1.則陰影部分的面積是:π﹣1.故答案為π﹣1.【點(diǎn)睛】本題考查了三角形的全等的判定與扇形的面積的計(jì)算的綜合題,正確證明△DMG≌△DNH,得到S四邊形DGCH=S四邊形DMCN是關(guān)鍵.12、2【解析】

連接AD交EF與點(diǎn)M′,連結(jié)AM,由線段垂直平分線的性質(zhì)可知AM=MB,則BM+DM=AM+DM,故此當(dāng)A、M、D在一條直線上時(shí),MB+DM有最小值,然后依據(jù)要三角形三線合一的性質(zhì)可證明AD為△ABC底邊上的高線,依據(jù)三角形的面積為12可求得AD的長(zhǎng).【詳解】解:連接AD交EF與點(diǎn)M′,連結(jié)AM.∵△ABC是等腰三角形,點(diǎn)D是BC邊的中點(diǎn),∴AD⊥BC,∴S△ABC=BC?AD=×4×AD=12,解得AD=1,∵EF是線段AB的垂直平分線,∴AM=BM.∴BM+MD=MD+AM.∴當(dāng)點(diǎn)M位于點(diǎn)M′處時(shí),MB+MD有最小值,最小值1.∴△BDM的周長(zhǎng)的最小值為DB+AD=2+1=2.【點(diǎn)睛】本題考查三角形的周長(zhǎng)最值問(wèn)題,結(jié)合等腰三角形的性質(zhì)、垂直平分線的性質(zhì)以及中點(diǎn)的相關(guān)屬性進(jìn)行分析.13、4.【解析】

|﹣3|+(﹣1)2=4,故答案為4.14、【解析】

利用特殊三角形的三邊關(guān)系,求出AM,AE長(zhǎng),求比值.【詳解】解:如圖所示,設(shè)BC=x,∵在Rt△ABC中,∠B=90°,∠A=30°,∴AC=2BC=2x,AB=BC=x,根據(jù)題意得:AD=BC=x,AE=DE=AB=x,如圖,作EM⊥AD于M,則AM=AD=x,在Rt△AEM中,cos∠EAD=,故答案為:.【點(diǎn)睛】特殊三角形:30°-60°-90°特殊三角形,三邊比例是1::2,利用特殊三角函數(shù)值或者勾股定理可快速求出邊的實(shí)際關(guān)系.15、二【解析】

根據(jù)點(diǎn)在第二象限的坐標(biāo)特點(diǎn)解答即可.【詳解】∵點(diǎn)A的橫坐標(biāo)-2<0,縱坐標(biāo)1>0,∴點(diǎn)A在第二象限內(nèi).故答案為:二.【點(diǎn)睛】本題主要考查了平面直角坐標(biāo)系中各個(gè)象限的點(diǎn)的坐標(biāo)的符號(hào)特點(diǎn):第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).16、1【解析】

設(shè)反比例函數(shù)解析式為y=,根據(jù)反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征得到k=3×(﹣4)=﹣2m,然后解關(guān)于m的方程即可.【詳解】解:設(shè)反比例函數(shù)解析式為y=,根據(jù)題意得k=3×(﹣4)=﹣2m,解得m=1.故答案為1.考點(diǎn):反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征.17、x>4【解析】

分別解出不等式組中的每一個(gè)不等式,然后根據(jù)同大取大得出不等式組的解集.【詳解】由①得:x>2;由②得:x>4;∴此不等式組的解集為x>4;故答案為x>4.【點(diǎn)睛】考查了解一元一次不等式組,一元一次不等式組的解法:解一元一次不等式組時(shí),一般先求出其中各不等式的解集,再求出這些解集的公共部分.解集的規(guī)律:同大取大;同小取??;大小小大中間找;大大小小找不到.三、解答題(共7小題,滿分69分)18、(1)120,補(bǔ)圖見解析;(2)96;(3)960人.【解析】

(1)由“不合格”的人數(shù)除以占的百分比求出總?cè)藬?shù),確定出“優(yōu)秀”的人數(shù),以及一般的百分比,補(bǔ)全統(tǒng)計(jì)圖即可;

(2)求出“一般”與“優(yōu)秀”占的百分比,乘以總?cè)藬?shù)即可得到結(jié)果;

(3)求出達(dá)標(biāo)占的百分比,乘以1200即可得到結(jié)果.【詳解】(1)根據(jù)題意得:24÷20%=120(人),則“優(yōu)秀”人數(shù)為120﹣(24+36)=60(人),“一般”占的百分比為×100%=30%,補(bǔ)全統(tǒng)計(jì)圖,如圖所示:(2)根據(jù)題意得:36+60=96(人),則達(dá)標(biāo)的人數(shù)為96人;(3)根據(jù)題意得:×1200=960(人),則全校達(dá)標(biāo)的學(xué)生有960人.故答案為(1)120;(2)96人.【點(diǎn)睛】本題考查的是條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖的綜合運(yùn)用,讀懂統(tǒng)計(jì)圖,從不同的統(tǒng)計(jì)圖中得到必要的信息是解決問(wèn)題的關(guān)鍵條形統(tǒng)計(jì)圖能清楚地表示出每個(gè)項(xiàng)目的數(shù)據(jù);扇形統(tǒng)計(jì)圖直接反映部分占總體的百分比大?。?9、(1)證明詳見解析;(2)S=56(m+1)2+152(m>【解析】試題分析:(1)利用兩點(diǎn)間的距離公式計(jì)算出AB=5,則AB=OA,則可根據(jù)“HL”證明△ABC≌△AOD;(2)過(guò)點(diǎn)B作直線BE⊥直線y=﹣m于E,作AF⊥BE于F,如圖,證明Rt△ABF∽R(shí)t△BCE,利用相似比可得BC=53(m+1),再在Rt△ACB中,由勾股定理得AC2=AB2+BC2=25+259(m+1)2,然后證明△AOB∽△ACD,利用相似的性質(zhì)得S△AOBS△ACD=(ABAC)2,而S△AOB(2)作BH⊥y軸于H,如圖,分類討論:當(dāng)AB∥CD時(shí),則∠ACD=∠CAB,由△AOB∽△ACD得∠ACD=∠AOB,所以∠CAB=∠AOB,利用三角函數(shù)得到tan∠AOB=2,tan∠ACB=ABBC=3m+1,所以3m+1=2;當(dāng)AD∥BC,則∠5=∠ACB,由△AOB∽△ACD得到∠4=∠5,則∠ACB=∠4,根據(jù)三角函數(shù)定義得到tan∠4=34,tan∠ACB=試題解析:(1)證明:∵A(0,5),B(2,1),∴AB=32∴AB=OA,∵AB⊥BC,∴∠ABC=90°,在Rt△ABC和Rt△AOD中,AB=AOAC=AD∴Rt△ABC≌Rt△AOD;(2)解:過(guò)點(diǎn)B作直線BE⊥直線y=﹣m于E,作AF⊥BE于F,如圖,∵∠1+∠2=90°,∠1+∠2=90°,∴∠2=∠2,∴Rt△ABF∽R(shí)t△BCE,∴ABBC=AF∴BC=53在Rt△ACB中,AC2=AB2+BC2=25+259(m+1)2∵△ABC≌△AOD,∴∠BAC=∠OAD,即∠4+∠OAC=∠OAC+∠5,∴∠4=∠5,而AO=AB,AD=AC,∴△AOB∽△ACD,∴S△AOBS△ACD而S△AOB=12×5×2=15∴S=56(m+1)2+152(m>(2)作BH⊥y軸于H,如圖,當(dāng)AB∥CD時(shí),則∠ACD=∠CAB,而△AOB∽△ACD,∴∠ACD=∠AOB,∴∠CAB=∠AOB,而tan∠AOB=BHOH=2,tan∠ACB=ABBC=55∴3m+1當(dāng)AD∥BC,則∠5=∠ACB,而△AOB∽△ACD,∴∠4=∠5,∴∠ACB=∠4,而tan∠4=BHAH=3∴3m+1=3解得m=2.綜上所述,m的值為2或1.考點(diǎn):相似形綜合題.20、(1)且,;(2)當(dāng)m=1時(shí),方程的整數(shù)根為0和3.【解析】

(1)先解出分式方程①的解,根據(jù)分式的意義和方程①的根為非負(fù)數(shù)得出的取值;

(2)根據(jù)根與系數(shù)的關(guān)系得到x1+x2=3,,根據(jù)方程的兩個(gè)根都是整數(shù)可得m=1或.結(jié)合(1)的結(jié)論可知m1.解方程即可.【詳解】解:(1)∵關(guān)于x的分式方程的根為非負(fù)數(shù),∴且.又∵,且,∴解得且.又∵方程為一元二次方程,∴.綜上可得:且,.(2)∵一元二次方程有兩個(gè)整數(shù)根x1、x2,m為整數(shù),∴x1+x2=3,,∴為整數(shù),∴m=1或.又∵且,,∴m1.當(dāng)m=1時(shí),原方程可化為.解得:,.∴當(dāng)m=1時(shí),方程的整數(shù)根為0和3.【點(diǎn)睛】考查了解分式方程,一元二次方程根與系數(shù)的關(guān)系,解一元二次方程等,熟練掌握方程的解法是解題的關(guān)鍵.21、(1)45°;(2)26°.【解析】

(1)根據(jù)圓周角和圓心角的關(guān)系和圖形可以求得∠ABC和∠ABD的大??;(2)根據(jù)題意和平行線的性質(zhì)、切線的性質(zhì)可以求得∠OCD的大小.【詳解】(1)∵AB是⊙O的直徑,∠BAC=38°,∴∠ACB=90°,∴∠ABC=∠ACB﹣∠BAC=90°﹣38°=52°,∵D為弧AB的中點(diǎn),∠AOB=180°,∴∠AOD=90°,∴∠ABD=45°;(2)連接OD,∵DP切⊙O于點(diǎn)D,∴OD⊥DP,即∠ODP=90°,∵DP∥AC,∠BAC=38°,∴∠P=∠BAC=38°,∵∠AOD是△ODP的一個(gè)外角,∴∠AOD=∠P+∠ODP=128°,∴∠ACD=64°,∵OC=OA,∠BAC=38°,∴∠OCA=∠BAC=38°,∴∠OCD=∠ACD﹣∠OCA=64°﹣38°=26°.【點(diǎn)睛】本題考查切線的性質(zhì)、圓周角定理,解答本題的關(guān)鍵是明確題意,找出所求問(wèn)題需要的條件,利用數(shù)形結(jié)合的思想解答.22、(1)y1=20x+540,y2=10x+1;(2)去年4月銷售該配件的利潤(rùn)最大,最大利潤(rùn)為450萬(wàn)元.【解析】

(1)利用待定系數(shù)法,結(jié)合圖象上點(diǎn)的坐標(biāo)求出一次函數(shù)解析式即可;(2)根據(jù)生產(chǎn)每件配件的人力成本為50元,其它成本30元,以及售價(jià)銷量進(jìn)而求出最大利潤(rùn).【詳解】(1)利用表格得出函數(shù)關(guān)系是一次函數(shù)關(guān)系:設(shè)y1=kx+b,∴解得:∴y1=20x+540,利用圖象得出函數(shù)關(guān)系是一次函數(shù)關(guān)系:設(shè)y2=ax+c,∴解得:∴y2=10x+1.(2)去年1至9月時(shí),銷售該配件的利潤(rùn)w=p1(1000﹣50﹣30﹣y1),=(0.1x+1.1)(1000﹣50﹣30﹣20x﹣540)=﹣2x2+16x+418,=﹣2(x﹣4)2+450,(1≤x≤9,且x取整數(shù))∵﹣2<0,1≤x≤9,∴當(dāng)x=4時(shí),w最大=450(萬(wàn)元);去年10至12月時(shí),銷售該配件的利潤(rùn)w=p2(1000﹣50﹣30﹣y2)=(﹣0.1x+2.9)(1000﹣50﹣30﹣10x﹣1),=(x﹣29)2,(10≤x≤12,且x取整數(shù)),∵10≤x≤12時(shí),∴當(dāng)x=10時(shí),w最大=361(萬(wàn)元),∵450>361,∴去年4月銷售該配件的利潤(rùn)最大,最大利潤(rùn)為450萬(wàn)元.【點(diǎn)睛】此題主要考查了一次函數(shù)的應(yīng)用,根據(jù)已知得出函數(shù)關(guān)系式以及利用函數(shù)增減性得出函數(shù)最值是解題關(guān)鍵.23、(1)y=-.y=x-1.(1)x<2.【解析】分析:(1)根據(jù)待定系數(shù)法即可求出反比例函數(shù)和一次函數(shù)的表達(dá)式.詳解:(1)∵,點(diǎn)A(5,2),點(diǎn)B(2,3),

又∵點(diǎn)C在y軸負(fù)半軸,點(diǎn)D在第二象限,

∴點(diǎn)C的坐標(biāo)為(2,-1)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論