2022屆河南省三門峽市陜州區(qū)西張村鎮(zhèn)初級中學中考數(shù)學全真模擬試卷含解析_第1頁
2022屆河南省三門峽市陜州區(qū)西張村鎮(zhèn)初級中學中考數(shù)學全真模擬試卷含解析_第2頁
2022屆河南省三門峽市陜州區(qū)西張村鎮(zhèn)初級中學中考數(shù)學全真模擬試卷含解析_第3頁
2022屆河南省三門峽市陜州區(qū)西張村鎮(zhèn)初級中學中考數(shù)學全真模擬試卷含解析_第4頁
2022屆河南省三門峽市陜州區(qū)西張村鎮(zhèn)初級中學中考數(shù)學全真模擬試卷含解析_第5頁
免費預覽已結(jié)束,剩余19頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2021-2022中考數(shù)學模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,在矩形ABCD中,AB=2,AD=3,點E是BC邊上靠近點B的三等分點,動點P從點A出發(fā),沿路徑A→D→C→E運動,則△APE的面積y與點P經(jīng)過的路徑長x之間的函數(shù)關(guān)系用圖象表示大致是()A. B. C. D.2.如圖,不等式組的解集在數(shù)軸上表示正確的是()A. B.C. D.3.如果a﹣b=5,那么代數(shù)式(﹣2)?的值是()A.﹣ B. C.﹣5 D.54.《孫子算經(jīng)》是中國古代重要的數(shù)學著作,成書于約一千五百年前,其中有首歌謠:今有竿不知其長,量得影長一丈五尺,立一標桿,長一尺五寸,影長五寸,問竿長幾何?意即:有一根竹竿不知道有多長,量出它在太陽下的影子長一丈五尺,同時立一根一尺五寸的小標桿,它的影長五寸(提示:1丈=10尺,1尺=10寸),則竹竿的長為()A.五丈 B.四丈五尺 C.一丈 D.五尺5.2017年我國大學生畢業(yè)人數(shù)將達到7490000人,這個數(shù)據(jù)用科學記數(shù)法表示為()A.7.49×107 B.74.9×106 C.7.49×106 D.0.749×1076.如圖,函數(shù)y=kx+b(k≠0)與y=(m≠0)的圖象交于點A(2,3),B(-6,-1),則不等式kx+b>的解集為()A. B. C. D.7.|﹣3|的值是()A.3 B. C.﹣3 D.﹣8.如圖所示,某公司有三個住宅區(qū),A、B、C各區(qū)分別住有職工30人,15人,10人,且這三點在一條大道上(A,B,C三點共線),已知AB=100米,BC=200米.為了方便職工上下班,該公司的接送車打算在此間只設(shè)一個??奎c,為使所有的人步行到停靠點的路程之和最小,那么該??奎c的位置應設(shè)在()A.點A B.點B C.A,B之間 D.B,C之間9.一、單選題如圖,△ABC中,AD是BC邊上的高,AE、BF分別是∠BAC、∠ABC的平分線,∠BAC=50°,∠ABC=60°,則∠EAD+∠ACD=()A.75° B.80° C.85° D.90°10.的倒數(shù)的絕對值是()A. B. C. D.11.若式子在實數(shù)范圍內(nèi)有意義,則x的取值范圍是()A.x>1 B.x>﹣1 C.x≥1 D.x≥﹣112.已知一次函數(shù)y=kx+3和y=k1x+5,假設(shè)k<0且k1>0,則這兩個一次函數(shù)的圖像的交點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:(本大題共6個小題,每小題4分,共24分.)13.一元二次方程x2﹣4=0的解是._________14.若一次函數(shù)y=-2x+b(b為常數(shù))的圖象經(jīng)過第二、三、四象限,則b的值可以是_________.(寫出一個即可)15.函數(shù)y=的定義域是________.16.如圖,在直角坐標平面xOy中,點A坐標為,,,AB與x軸交于點C,那么AC:BC的值為______.17.如圖,已知直線y=x+4與雙曲線y=(x<0)相交于A、B兩點,與x軸、y軸分別相交于D、C兩點,若AB=2,則k=_____.18.如圖,在△ABC中,BE平分∠ABC,DE∥BC,如果DE=2AD,AE=3,那么EC=_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)已知:AB為⊙O上一點,如圖,,,BH與⊙O相切于點B,過點C作BH的平行線交AB于點E.(1)求CE的長;(2)延長CE到F,使,連結(jié)BF并延長BF交⊙O于點G,求BG的長;(3)在(2)的條件下,連結(jié)GC并延長GC交BH于點D,求證:20.(6分)如圖,安徽江淮集團某部門研制了繪圖智能機器人,該機器人由機座、手臂和末端操作器三部分組成,底座直線且,手臂,末端操作器,直線.當機器人運作時,,求末端操作器節(jié)點到地面直線的距離.(結(jié)果保留根號)21.(6分)中華文明,源遠流長;中華漢字,寓意深廣,為了傳承優(yōu)秀傳統(tǒng)文化,某校團委組織了一次全校3000名學生參加的“漢字聽寫”大賽,賽后發(fā)現(xiàn)所有參賽學生的成績均不低于50分.為了更好地了解本次大賽的成績分布情況,隨機抽取了其中200名學生的成績(成績x取整數(shù),總分100分)作為樣本進行整理,得到下列不完整的統(tǒng)計圖表:成績x/分頻數(shù)頻率50≤x<60100.0560≤x<70300.1570≤x<8040n80≤x<90m0.3590≤x≤100500.25請根據(jù)所給信息,解答下列問題:m=,n=;請補全頻數(shù)分布直方圖;若成績在90分以上(包括90分)的為“優(yōu)”等,則該校參加這次比賽的3000名學生中成績“優(yōu)”等約有多少人?22.(8分)為了了解某校學生對以下四個電視節(jié)目:A《最強大腦》,B《中國詩詞大會》,C《朗讀者》,D《出彩中國人》的喜愛情況,隨機抽取了部分學生進行調(diào)查,要求每名學生選出并且只能選出一個自己最喜愛的節(jié)目,根據(jù)調(diào)查結(jié)果,繪制了如下兩幅不完整的統(tǒng)計圖.請你根據(jù)圖中所提供的信息,完成下列問題:本次調(diào)查的學生人數(shù)為________;在扇形統(tǒng)計圖中,A部分所占圓心角的度數(shù)為________;請將條形統(tǒng)計圖補充完整:若該校共有3000名學生,估計該校最喜愛《中國詩詞大會》的學生有多少名?23.(8分)已知AC,EC分別是四邊形ABCD和EFCG的對角線,直線AE與直線BF交于點H(1)觀察猜想如圖1,當四邊形ABCD和EFCG均為正方形時,線段AE和BF的數(shù)量關(guān)系是;∠AHB=.(2)探究證明如圖2,當四邊形ABCD和FFCG均為矩形,且∠ACB=∠ECF=30°時,(1)中的結(jié)論是否仍然成立,并說明理由.(3)拓展延伸在(2)的條件下,若BC=9,F(xiàn)C=6,將矩形EFCG繞點C旋轉(zhuǎn),在整個旋轉(zhuǎn)過程中,當A、E、F三點共線時,請直接寫出點B到直線AE的距離.24.(10分)列方程或方程組解應用題:去年暑期,某地由于暴雨導致電路中斷,該地供電局組織電工進行搶修.供電局距離搶修工地15千米.搶修車裝載著所需材料先從供電局出發(fā),10分鐘后,電工乘吉普車從同一地點出發(fā),結(jié)果他們同時到達搶修工地.已知吉普車速度是搶修車速度的1.5倍,求吉普車的速度.25.(10分)我國南水北調(diào)中線工程的起點是丹江口水庫,按照工程計劃,需對原水庫大壩進行混凝土培厚加高,使壩高由原來的162米增加到176.6米,以抬高蓄水位,如圖是某一段壩體加高工程的截面示意圖,其中原壩體的高為BE,背水坡坡角∠BAE=68°,新壩體的高為DE,背水坡坡角∠DCE=60°.求工程完工后背水坡底端水平方向增加的寬度AC.(結(jié)果精確到0.1米,參考數(shù)據(jù):sin68°≈0.93,cos68°≈0.37,tan68°≈2.5,≈1.73)26.(12分)在平面直角坐標系中,已知拋物線經(jīng)過A(-3,0),B(0,-3),C(1,0)三點.(1)求拋物線的解析式;(2)若點M為第三象限內(nèi)拋物線上一動點,點M的橫坐標為m,△AMB的面積為S.求S關(guān)于m的函數(shù)關(guān)系式,并求出S的最大值;(3)若點P是拋物線上的動點,點Q是直線y=-x上的動點,判斷有幾個位置能夠使得點P、Q、B、O為頂點的四邊形為平行四邊形,直接寫出相應的點Q的坐標.27.(12分)某超市開展早市促銷活動,為早到的顧客準備一份簡易早餐,餐品為四樣A:菜包、B:面包、C:雞蛋、D:油條.超市約定:隨機發(fā)放,早餐一人一份,一份兩樣,一樣一個.按約定,“某顧客在該天早餐得到兩個雞蛋”是事件(填“隨機”、“必然”或“不可能”);請用列表或畫樹狀圖的方法,求出某顧客該天早餐剛好得到菜包和油條的概率.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

由題意可知,當時,;當時,;當時,.∵時,;時,.∴結(jié)合函數(shù)解析式,可知選項B正確.【點睛】考點:1.動點問題的函數(shù)圖象;2.三角形的面積.2、B【解析】

首先分別解出兩個不等式,再確定不等式組的解集,然后在數(shù)軸上表示即可.【詳解】解:解第一個不等式得:x>-1;解第二個不等式得:x≤1,在數(shù)軸上表示,故選B.【點睛】此題主要考查了解一元一次不等式組,以及在數(shù)軸上表示解集,把每個不等式的解集在數(shù)軸上表示出來(>,≥向右畫;<,≤向左畫),數(shù)軸上的點把數(shù)軸分成若干段,如果數(shù)軸的某一段上面表示解集的線的條數(shù)與不等式的個數(shù)一樣,那么這段就是不等式組的解集.有幾個就要幾個.在表示解集時“≥”,“≤”要用實心圓點表示;“<“>”要用空心圓點表示.3、D【解析】【分析】先對括號內(nèi)的進行通分,進行分式的加減法運算,然后再進行分式的乘除法運算,最后把a-b=5整體代入進行求解即可.【詳解】(﹣2)?===a-b,當a-b=5時,原式=5,故選D.4、B【解析】【分析】根據(jù)同一時刻物高與影長成正比可得出結(jié)論.【詳解】設(shè)竹竿的長度為x尺,∵竹竿的影長=一丈五尺=15尺,標桿長=一尺五寸=1.5尺,影長五寸=0.5尺,∴,解得x=45(尺),故選B.【點睛】本題考查了相似三角形的應用舉例,熟知同一時刻物髙與影長成正比是解答此題的關(guān)鍵.5、C【解析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】7490000=7.49×106.故選C.【點睛】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.6、B【解析】

根據(jù)函數(shù)的圖象和交點坐標即可求得結(jié)果.【詳解】解:不等式kx+b>的解集為:-6<x<0或x>2,

故選B.【點睛】此題考查反比例函數(shù)與一次函數(shù)的交點問題,解題關(guān)鍵是注意掌握數(shù)形結(jié)合思想的應用.7、A【解析】分析:根據(jù)絕對值的定義回答即可.詳解:負數(shù)的絕對值等于它的相反數(shù),故選A.點睛:考查絕對值,非負數(shù)的絕對值等于它本身,負數(shù)的絕對值等于它的相反數(shù).8、A【解析】

此題為數(shù)學知識的應用,由題意設(shè)一個??奎c,為使所有的人步行到??奎c的路程之和最小,肯定要盡量縮短兩地之間的里程,就用到兩點間線段最短定理.【詳解】解:①以點A為停靠點,則所有人的路程的和=15×100+10×300=1(米),②以點B為??奎c,則所有人的路程的和=30×100+10×200=5000(米),③以點C為停靠點,則所有人的路程的和=30×300+15×200=12000(米),④當在AB之間??繒r,設(shè)??奎c到A的距離是m,則(0<m<100),則所有人的路程的和是:30m+15(100﹣m)+10(300﹣m)=1+5m>1,⑤當在BC之間??繒r,設(shè)??奎c到B的距離為n,則(0<n<200),則總路程為30(100+n)+15n+10(200﹣n)=5000+35n>1.∴該??奎c的位置應設(shè)在點A;故選A.【點睛】此題為數(shù)學知識的應用,考查知識點為兩點之間線段最短.9、A【解析】分析:依據(jù)AD是BC邊上的高,∠ABC=60°,即可得到∠BAD=30°,依據(jù)∠BAC=50°,AE平分∠BAC,即可得到∠DAE=5°,再根據(jù)△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,可得∠EAD+∠ACD=75°.詳解:∵AD是BC邊上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE平分∠BAC,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故選A.點睛:本題考查了三角形內(nèi)角和定理:三角形內(nèi)角和為180°.解決問題的關(guān)鍵是三角形外角性質(zhì)以及角平分線的定義的運用.10、D【解析】

直接利用倒數(shù)的定義結(jié)合絕對值的性質(zhì)分析得出答案.【詳解】解:?的倒數(shù)為?,則?的絕對值是:.故答案選:D.【點睛】本題考查了倒數(shù)的定義與絕對值的性質(zhì),解題的關(guān)鍵是熟練的掌握倒數(shù)的定義與絕對值的性質(zhì).11、A【解析】

直接利用二次根式有意義的條件分析得出答案.【詳解】∵式子在實數(shù)范圍內(nèi)有意義,∴x﹣1>0,解得:x>1.故選:A.【點睛】此題主要考查了二次根式有意義的條件,正確把握定義是解題關(guān)鍵.12、B【解析】

依題意在同一坐標系內(nèi)畫出圖像即可判斷.【詳解】根據(jù)題意可作兩函數(shù)圖像,由圖像知交點在第二象限,故選B.【點睛】此題主要考查一次函數(shù)的圖像,解題的關(guān)鍵是根據(jù)題意作出相應的圖像.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、x=±1【解析】移項得x1=4,∴x=±1.故答案是:x=±1.14、-1【解析】試題分析:根據(jù)一次函數(shù)的圖象經(jīng)過第二、三、四象限,可以得出k<1,b<1,隨便寫出一個小于1的b值即可.∵一次函數(shù)y=﹣2x+b(b為常數(shù))的圖象經(jīng)過第二、三、四象限,∴k<1,b<1.考點:一次函數(shù)圖象與系數(shù)的關(guān)系15、【解析】分析:根據(jù)分式有意義的條件是分母不為0,即可求解.詳解:由題意得:x-2≠0,即.故答案為點睛:本題考查了使函數(shù)有意義的自變量的取值范圍的確定.函數(shù)是整式型,自變量去全體實數(shù);函數(shù)是分式型,自變量是使分母不為0的實數(shù);根式型的函數(shù)的自變量去根號下的式子大于或等于0的實數(shù);當函數(shù)關(guān)系式表示實際問題時,自變量不僅要使函數(shù)關(guān)系式有意義,還要使實際問題有意義.16、【解析】

過點A作AD⊥y軸,垂足為D,作BE⊥y軸,垂足為E.先證△ADO∽△OEB,再根據(jù)∠OAB=30°求出三角形的相似比,得到OD:OE=2∶,根據(jù)平行線分線段成比例得到AC:BC=OD:OE=2∶=【詳解】解:如圖所示:過點A作AD⊥y軸,垂足為D,作BE⊥y軸,垂足為E.∵∠OAB=30°,∠ADE=90°,∠DEB=90°∴∠DOA+∠BOE=90°,∠OBE+∠BOE=90°∴∠DOA=∠OBE∴△ADO∽△OEB∵∠OAB=30°,∠AOB=90°,∴OA∶OB=∵點A坐標為(3,2)∴AD=3,OD=2∵△ADO∽△OEB∴∴OE∵OC∥AD∥BE根據(jù)平行線分線段成比例得:AC:BC=OD:OE=2∶=故答案為.【點睛】本題考查三角形相似的證明以及平行線分線段成比例.17、-3【解析】設(shè)A(a,a+4),B(c,c+4),則解得:x+4=,即x2+4x?k=0,∵直線y=x+4與雙曲線y=相交于A、B兩點,∴a+c=?4,ac=-k,∴(c?a)2=(c+a)2?4ac=16+4k,∵AB=,∴由勾股定理得:(c?a)2+[c+4?(a+4)]2=()2,2(c?a)2=8,(c?a)2=4,∴16+4k=4,解得:k=?3,故答案為?3.點睛:本題考查了一次函數(shù)與反比例函數(shù)的交點問題、根與系數(shù)的關(guān)系、勾股定理、圖象上點的坐標特征等,題目具有一定的代表性,綜合性強,有一定難度.18、1.【解析】

由BE平分∠ABC,DE∥BC,易得△BDE是等腰三角形,即可得BD=2AD,又由平行線分線段成比例定理,即可求得答案.【詳解】解:∵DE∥BC,∴∠DEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠DEB,∴BD=DE,∵DE=2AD,∴BD=2AD,∵DE∥BC,∴AD:DB=AE:EC,∴EC=2AE=2×3=1.故答案為:1.【點睛】此題考查了平行線分線段成比例定理以及等腰三角形的判定與性質(zhì).注意掌握線段的對應關(guān)系是解此題的關(guān)鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)CE=4;(2)BG=8;(3)證明見解析.【解析】

(1)只要證明△ABC∽△CBE,可得,由此即可解決問題;

(2)連接AG,只要證明△ABG∽△FBE,可得,由BE==4,再求出BF,即可解決問題;

(3)通過計算首先證明CF=FG,推出∠FCG=∠FGC,由CF∥BD,推出∠GCF=∠BDG,推出∠BDG=∠BGD即可證明.【詳解】解:(1)∵BH與⊙O相切于點B,∴AB⊥BH,∵BH∥CE,∴CE⊥AB,∵AB是直徑,∴∠CEB=∠ACB=90°,∵∠CBE=∠ABC,∴△ABC∽△CBE,∴,∵AC=,∴CE=4.(2)連接AG.∵∠FEB=∠AGB=90°,∠EBF=∠ABG,∴△ABG∽△FBE,∴,∵BE==4,∴BF=,∴,∴BG=8.(3)易知CF=4+=5,∴GF=BG﹣BF=5,∴CF=GF,∴∠FCG=∠FGC,∵CF∥BD,∴∠GCF=∠BDG,∴∠BDG=∠BGD,∴BG=BD.【點睛】本題考查的是切線的性質(zhì)、相似三角形的判定和性質(zhì)、勾股定理的應用,掌握圓的切線垂直于經(jīng)過切點的半徑是解題的關(guān)鍵.20、()cm.【解析】

作BG⊥CD,垂足為G,BH⊥AF,垂足為H,解和,分別求出CG和BH的長,根據(jù)D到L的距離求解即可.【詳解】如圖,作BG⊥CD,垂足為G,BH⊥AF,垂足為H,在中,∠BCD=60°,BC=60cm,∴,在中,∠BAF=45°,AB=60cm,∴,∴D到L的距離.【點睛】本題考查解直角三角形,解題的關(guān)鍵是構(gòu)造出適當輔助線,從而利用銳角三角函數(shù)的定義求出相關(guān)線段.21、(1)70,0.2(2)70(3)750【解析】

(1)根據(jù)題意和統(tǒng)計表中的數(shù)據(jù)可以求得m、n的值;(2)根據(jù)(1)中求得的m的值,從而可以將條形統(tǒng)計圖補充完整;(3)根據(jù)統(tǒng)計表中的數(shù)據(jù)可以估計該校參加這次比賽的3000名學生中成績“優(yōu)”等約有多少人.【詳解】解:(1)由題意可得,m=200×0.35=70,n=40÷200=0.2,故答案為70,0.2;(2)由(1)知,m=70,補全的頻數(shù)分布直方圖,如下圖所示;(3)由題意可得,該校參加這次比賽的3000名學生中成績“優(yōu)”等約有:3000×0.25=750(人),答:該校參加這次比賽的3000名學生中成績“優(yōu)”等約有750人.【點睛】本題考查頻數(shù)分布直方圖、頻數(shù)分布表、用樣本估計總體,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.22、(1)120;(2)

;(3)答案見解析;(4)1650.【解析】

(1)依據(jù)節(jié)目B的數(shù)據(jù),即可得到調(diào)查的學生人數(shù);(2)依據(jù)A部分的百分比,即可得到A部分所占圓心角的度數(shù);(3)求得C部分的人數(shù),即可將條形統(tǒng)計圖補充完整;(4)依據(jù)喜愛《中國詩詞大會》的學生所占的百分比,即可得到該校最喜愛《中國詩詞大會》的學生數(shù)量.【詳解】,故答案為120;,故答案為;:,如圖所示:,答:該校最喜愛中國詩詞大會的學生有1650名.【點睛】本題考查了條形統(tǒng)計圖、扇形統(tǒng)計圖、用樣本估計總體,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合思想解答.23、(1),45°;(2)不成立,理由見解析;(3).【解析】

(1)由正方形的性質(zhì),可得,∠ACB=∠GEC=45°,求得△CAE∽△CBF,由相似三角形的性質(zhì)得到,∠CAB==45°,又因為∠CBA=90°,所以∠AHB=45°.(2)由矩形的性質(zhì),及∠ACB=∠ECF=30°,得到△CAE∽△CBF,由相似三角形的性質(zhì)可得∠CAE=∠CBF,,則∠CAB=60°,又因為∠CBA=90°,求得∠AHB=30°,故不成立.(3)分兩種情況討論:①作BM⊥AE于M,因為A、E、F三點共線,及∠AFB=30°,∠AFC=90°,進而求得AC和EF,根據(jù)勾股定理求得AF,則AE=AF﹣EF,再由(2)得:,所以BF=3﹣3,故BM=.②如圖3所示:作BM⊥AE于M,由A、E、F三點共線,得:AE=6+2,BF=3+3,則BM=.【詳解】解:(1)如圖1所示:∵四邊形ABCD和EFCG均為正方形,∴,∠ACB=∠GEC=45°,∴∠ACE=∠BCF,∴△CAE∽△CBF,∴∠CAE=∠CBF,,∴,∠CAB=∠CAE+∠EAB=∠CBF+∠EAB=45°,∵∠CBA=90°,∴∠AHB=180°﹣90°﹣45°=45°,故答案為,45°;(2)不成立;理由如下:∵四邊形ABCD和EFCG均為矩形,且∠ACB=∠ECF=30°,∴,∠ACE=∠BCF,∴△CAE∽△CBF,∴∠CAE=∠CBF,,∴∠CAB=∠CAE+∠EAB=∠CBF+∠EAB=60°,∵∠CBA=90°,∴∠AHB=180°﹣90°﹣60°=30°;(3)分兩種情況:①如圖2所示:作BM⊥AE于M,當A、E、F三點共線時,由(2)得:∠AFB=30°,∠AFC=90°,在Rt△ABC和Rt△CEF中,∵∠ACB=∠ECF=30°,∴AC=,EF=CF×tan30°=6×=2,在Rt△ACF中,AF=,∴AE=AF﹣EF=6﹣2,由(2)得:,∴BF=(6﹣2)=3﹣3,在△BFM中,∵∠AFB=30°,∴BM=BF=;②如圖3所示:作BM⊥AE于M,當A、E、F三點共線時,同(2)得:AE=6+2,BF=3+3,則BM=BF=;綜上所述,當A、E、F三點共線時,點B到直線AE的距離為.【點睛】本題考察正方形的性質(zhì)和矩形的性質(zhì)以及三點共線,熟練掌握正方形的性質(zhì)和矩形的性質(zhì),知道分類討論三點共線問題是解題的關(guān)鍵.本題屬于中等偏難.24、吉普車的速度為30千米/時.【解析】

先設(shè)搶修車的速度為x千米/時,則吉普車的速度為1.5x千米/時,列出方程求出x的值,再進行檢驗,即可求出答案.【詳解】解:設(shè)搶修車的速度為x千米/時,則吉普車的速度為15x千米/時.由題意得:.解得,x=20經(jīng)檢驗,x=20是原方程的解,并且x=20,1.5x=30都符合題意.答:吉普車的速度為30千米/時.點評:本題難度中等,主要考查學生對分式方程實際應用的綜合運用.為中考常見題型,要求學生牢固掌握.注意檢驗.25、工程完工后背水坡底端水平方向增加的寬度AC約為37.3米.【解析】解:在Rt△BAE中,∠BAE=680,BE=162米,∴(米).在Rt△DEC中,∠DGE=600,DE=176.6米,∴(米).∴(米).∴工程完工后背水坡底端水平方向增加的寬度

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論