2022年江蘇省無錫市惠山區(qū)七校中考數(shù)學(xué)考試模擬沖刺卷含解析_第1頁
2022年江蘇省無錫市惠山區(qū)七校中考數(shù)學(xué)考試模擬沖刺卷含解析_第2頁
2022年江蘇省無錫市惠山區(qū)七校中考數(shù)學(xué)考試模擬沖刺卷含解析_第3頁
2022年江蘇省無錫市惠山區(qū)七校中考數(shù)學(xué)考試模擬沖刺卷含解析_第4頁
2022年江蘇省無錫市惠山區(qū)七校中考數(shù)學(xué)考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩23頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2021-2022中考數(shù)學(xué)模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,點A,B在雙曲線y=(x>0)上,點C在雙曲線y=(x>0)上,若AC∥y軸,BC∥x軸,且AC=BC,則AB等于()A. B.2 C.4 D.32.如圖,已知E,B,F(xiàn),C四點在一條直線上,,,添加以下條件之一,仍不能證明≌的是A. B. C. D.3.如圖,是的直徑,弦,垂足為點,點是上的任意一點,延長交的延長線于點,連接.若,則等于()A. B. C. D.4.的值等于()A. B. C. D.5.若關(guān)于x的一元二次方程x2-2x-k=0沒有實數(shù)根,則k的取值范圍是()A.k>-1 B.k≥-1 C.k<-1 D.k≤-16.如圖,在平行四邊形ABCD中,∠ABC的平分線BF交AD于點F,F(xiàn)E∥AB.若AB=5,AD=7,BF=6,則四邊形ABEF的面積為()A.48 B.35 C.30 D.247.下列圖形中既是中心對稱圖形又是軸對稱圖形的是A. B. C. D.8.若△÷,則“△”可能是()A. B. C. D.9.下列多邊形中,內(nèi)角和是一個三角形內(nèi)角和的4倍的是()A.四邊形B.五邊形C.六邊形D.八邊形10.多項式ax2﹣4ax﹣12a因式分解正確的是()A.a(chǎn)(x﹣6)(x+2) B.a(chǎn)(x﹣3)(x+4) C.a(chǎn)(x2﹣4x﹣12) D.a(chǎn)(x+6)(x﹣2)11.在剛過去的2017年,我國整體經(jīng)濟實力躍上了一個新臺階,城鎮(zhèn)新增就業(yè)1351萬人,數(shù)據(jù)“1351萬”用科學(xué)記數(shù)法表示為()A.13.51×106 B.1.351×107 C.1.351×106 D.0.1531×10812.如圖,菱形ABCD的邊長為2,∠B=30°.動點P從點B出發(fā),沿B-C-D的路線向點D運動.設(shè)△ABP的面積為y(B、P兩點重合時,△ABP的面積可以看作0),點P運動的路程為x,則y與x之間函數(shù)關(guān)系的圖像大致為()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.把一張長方形紙條按如圖所示折疊后,若∠AOB′=70°,則∠B′OG=_____.14.因式分解:a2b+2ab+b=.15.如果兩個相似三角形的面積的比是4:9,那么它們對應(yīng)的角平分線的比是_____.16.如圖,點D在的邊上,已知點E、點F分別為和的重心,如果,那么兩個三角形重心之間的距離的長等于________.17.?dāng)?shù)據(jù)﹣2,0,﹣1,2,5的平均數(shù)是_____,中位數(shù)是_____.18.如圖,AB是半徑為2的⊙O的弦,將沿著弦AB折疊,正好經(jīng)過圓心O,點C是折疊后的上一動點,連接并延長BC交⊙O于點D,點E是CD的中點,連接AC,AD,EO.則下列結(jié)論:①∠ACB=120°,②△ACD是等邊三角形,③EO的最小值為1,其中正確的是_____.(請將正確答案的序號填在橫線上)三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)某公司銷售A,B兩種品牌的教學(xué)設(shè)備,這兩種教學(xué)設(shè)備的進價和售價如表所示AB進價(萬元/套)1.51.2售價(萬元/套)1.81.4該公司計劃購進兩種教學(xué)設(shè)備若干套,共需66萬元,全部銷售后可獲毛利潤12萬元.(1)該公司計劃購進A,B兩種品牌的教學(xué)設(shè)備各多少套?(2)通過市場調(diào)研,該公司決定在原計劃的基礎(chǔ)上,減少A種設(shè)備的購進數(shù)量,增加B種設(shè)備的購進數(shù)量,已知B種設(shè)備增加的數(shù)量是A種設(shè)備減少的數(shù)量的1.5倍.若用于購進這兩種教學(xué)設(shè)備的總資金不超過68萬元,問A種設(shè)備購進數(shù)量至多減少多少套?20.(6分)對于某一函數(shù)給出如下定義:若存在實數(shù)p,當(dāng)其自變量的值為p時,其函數(shù)值等于p,則稱p為這個函數(shù)的不變值.在函數(shù)存在不變值時,該函數(shù)的最大不變值與最小不變值之差q稱為這個函數(shù)的不變長度.特別地,當(dāng)函數(shù)只有一個不變值時,其不變長度q為零.例如:下圖中的函數(shù)有0,1兩個不變值,其不變長度q等于1.(1)分別判斷函數(shù)y=x-1,y=x-1,y=x2有沒有不變值?如果有,直接寫出其不變長度;(2)函數(shù)y=2x2-bx.①若其不變長度為零,求b的值;②若1≤b≤3,求其不變長度q的取值范圍;(3)記函數(shù)y=x2-2x(x≥m)的圖象為G1,將G1沿x=m翻折后得到的函數(shù)圖象記為G2,函數(shù)G的圖象由G1和G2兩部分組成,若其不變長度q滿足0≤q≤3,則m的取值范圍為.21.(6分)已知,拋物線y=﹣x2+bx+c經(jīng)過點A(﹣1,0)和C(0,3).(1)求拋物線的解析式;(2)設(shè)點M在拋物線的對稱軸上,當(dāng)△MAC是以AC為直角邊的直角三角形時,求點M的坐標.22.(8分)某高中進行“選科走班”教學(xué)改革,語文、數(shù)學(xué)、英語三門為必修學(xué)科,另外還需從物理、化學(xué)、生物、政治、歷史、地理(分別記為A、B、C、D、E、F)六門選修學(xué)科中任選三門,現(xiàn)對該校某班選科情況進行調(diào)查,對調(diào)查結(jié)果進行了分析統(tǒng)計,并制作了兩幅不完整的統(tǒng)計圖.請根據(jù)以上信息,完成下列問題:該班共有學(xué)生人;請將條形統(tǒng)計圖補充完整;該班某同學(xué)物理成績特別優(yōu)異,已經(jīng)從選修學(xué)科中選定物理,還需從余下選修學(xué)科中任意選擇兩門,請用列表或畫樹狀圖的方法,求出該同學(xué)恰好選中化學(xué)、歷史兩科的概率.23.(8分)如圖1,在平面直角坐標系中,O為坐標原點,拋物線y=ax2+bx+3交x軸于B、C兩點(點B在左,點C在右),交y軸于點A,且OA=OC,B(﹣1,0).(1)求此拋物線的解析式;(2)如圖2,點D為拋物線的頂點,連接CD,點P是拋物線上一動點,且在C、D兩點之間運動,過點P作PE∥y軸交線段CD于點E,設(shè)點P的橫坐標為t,線段PE長為d,寫出d與t的關(guān)系式(不要求寫出自變量t的取值范圍);(3)如圖3,在(2)的條件下,連接BD,在BD上有一動點Q,且DQ=CE,連接EQ,當(dāng)∠BQE+∠DEQ=90°時,求此時點P的坐標.24.(10分)正方形ABCD的邊長為3,點E,F(xiàn)分別在射線DC,DA上運動,且DE=DF.連接BF,作EH⊥BF所在直線于點H,連接CH.(1)如圖1,若點E是DC的中點,CH與AB之間的數(shù)量關(guān)系是______;(2)如圖2,當(dāng)點E在DC邊上且不是DC的中點時,(1)中的結(jié)論是否成立?若成立給出證明;若不成立,說明理由;(3)如圖3,當(dāng)點E,F(xiàn)分別在射線DC,DA上運動時,連接DH,過點D作直線DH的垂線,交直線BF于點K,連接CK,請直接寫出線段CK長的最大值.25.(10分)如圖,在矩形ABCD中,AB═2,AD=,P是BC邊上的一點,且BP=2CP.(1)用尺規(guī)在圖①中作出CD邊上的中點E,連接AE、BE(保留作圖痕跡,不寫作法);(2)如圖②,在(1)的條體下,判斷EB是否平分∠AEC,并說明理由;(3)如圖③,在(2)的條件下,連接EP并廷長交AB的廷長線于點F,連接AP,不添加輔助線,△PFB能否由都經(jīng)過P點的兩次變換與△PAE組成一個等腰三角形?如果能,說明理由,并寫出兩種方法(指出對稱軸、旋轉(zhuǎn)中心、旋轉(zhuǎn)方向和平移距離)26.(12分)計算:|﹣2|+8+(2017﹣π)0﹣4cos45°27.(12分)如圖,一次函數(shù)的圖象與反比例函數(shù)(為常數(shù),且)的圖象交于A(1,a)、B兩點.求反比例函數(shù)的表達式及點B的坐標;在x軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標及△PAB的面積.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】【分析】依據(jù)點C在雙曲線y=上,AC∥y軸,BC∥x軸,可設(shè)C(a,),則B(3a,),A(a,),依據(jù)AC=BC,即可得到﹣=3a﹣a,進而得出a=1,依據(jù)C(1,1),B(3,1),A(1,3),即可得到AC=BC=2,進而得到Rt△ABC中,AB=2.【詳解】點C在雙曲線y=上,AC∥y軸,BC∥x軸,設(shè)C(a,),則B(3a,),A(a,),∵AC=BC,∴﹣=3a﹣a,解得a=1,(負值已舍去)∴C(1,1),B(3,1),A(1,3),∴AC=BC=2,∴Rt△ABC中,AB=2,故選B.【點睛】本題主要考查了反比例函數(shù)圖象上點的坐標特征,注意反比例函數(shù)圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k.2、B【解析】

由EB=CF,可得出EF=BC,又有∠A=∠D,本題具備了一組邊、一組角對應(yīng)相等,為了再添一個條件仍不能證明△ABC≌△DEF,那么添加的條件與原來的條件可形成SSA,就不能證明△ABC≌△DEF了.【詳解】添加,根據(jù)AAS能證明≌,故A選項不符合題意.B.添加與原條件滿足SSA,不能證明≌,故B選項符合題意;C.添加,可得,根據(jù)AAS能證明≌,故C選項不符合題意;D.添加,可得,根據(jù)AAS能證明≌,故D選項不符合題意,故選B.【點睛】本題考查了三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應(yīng)相等時,角必須是兩邊的夾角.3、B【解析】

連接BD,利用直徑得出∠ABD=65°,進而利用圓周角定理解答即可.【詳解】連接BD,∵AB是直徑,∠BAD=25°,∴∠ABD=90°-25°=65°,∴∠AGD=∠ABD=65°,故選B.【點睛】此題考查圓周角定理,關(guān)鍵是利用直徑得出∠ABD=65°.4、C【解析】試題解析:根據(jù)特殊角的三角函數(shù)值,可知:故選C.5、C【解析】試題分析:由題意可得根的判別式,即可得到關(guān)于k的不等式,解出即可.由題意得,解得故選C.考點:一元二次方程的根的判別式點評:解答本題的關(guān)鍵是熟練掌握一元二次方程,當(dāng)時,方程有兩個不相等實數(shù)根;當(dāng)時,方程的兩個相等的實數(shù)根;當(dāng)時,方程沒有實數(shù)根.6、D【解析】分析:首先證明四邊形ABEF為菱形,根據(jù)勾股定理求出對角線AE的長度,從而得出四邊形的面積.詳解:∵AB∥EF,AF∥BE,∴四邊形ABEF為平行四邊形,∵BF平分∠ABC,∴四邊形ABEF為菱形,連接AE交BF于點O,∵BF=6,BE=5,∴BO=3,EO=4,∴AE=8,則四邊形ABEF的面積=6×8÷2=24,故選D.點睛:本題主要考查的是菱形的性質(zhì)以及判定定理,屬于中等難度的題型.解決本題的關(guān)鍵就是根據(jù)題意得出四邊形為菱形.7、B【解析】

根據(jù)軸對稱圖形與中心對稱圖形的概念,軸對稱圖形兩部分沿對稱軸折疊后可重合;中心對稱圖形是圖形沿對稱中心旋轉(zhuǎn)180度后與原圖重合.【詳解】A、是軸對稱圖形,不是中心對稱圖形,不符合題意;B、是軸對稱圖形,也是中心對稱圖形,符合題意;C、是軸對稱圖形,不是中心對稱圖形,不符合題意;D、不是軸對稱圖形,是中心對稱圖形,不符合題意.故選B.8、A【解析】

直接利用分式的乘除運算法則計算得出答案.【詳解】。故選:A.【點睛】考查了分式的乘除運算,正確分解因式再化簡是解題關(guān)鍵.9、C【解析】

利用多邊形的內(nèi)角和公式列方程求解即可【詳解】設(shè)這個多邊形的邊數(shù)為n.由題意得:(n﹣2)×180°=4×180°.解得:n=1.答:這個多邊形的邊數(shù)為1.故選C.【點睛】本題主要考查的是多邊形的內(nèi)角和公式,掌握多邊形的內(nèi)角和公式是解題的關(guān)鍵.10、A【解析】試題分析:首先提取公因式a,進而利用十字相乘法分解因式得出即可.解:ax2﹣4ax﹣12a=a(x2﹣4x﹣12)=a(x﹣6)(x+2).故答案為a(x﹣6)(x+2).點評:此題主要考查了提取公因式法以及十字相乘法分解因式,正確利用十字相乘法分解因式是解題關(guān)鍵.11、B【解析】

根據(jù)科學(xué)記數(shù)法進行解答.【詳解】1315萬即13510000,用科學(xué)記數(shù)法表示為1.351×107.故選擇B.【點睛】本題主要考查科學(xué)記數(shù)法,科學(xué)記數(shù)法表示數(shù)的標準形式是a×10n(1≤│a│<10且n為整數(shù)).12、C【解析】

先分別求出點P從點B出發(fā),沿B→C→D向終點D勻速運動時,當(dāng)0<x≤2和2<x≤4時,y與x之間的函數(shù)關(guān)系式,即可得出函數(shù)的圖象.【詳解】由題意知,點P從點B出發(fā),沿B→C→D向終點D勻速運動,則

當(dāng)0<x≤2,y=x,

當(dāng)2<x≤4,y=1,

由以上分析可知,這個分段函數(shù)的圖象是C.

故選C.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、55°【解析】

由翻折性質(zhì)得,∠BOG=∠B′OG,根據(jù)鄰補角定義可得.【詳解】解:由翻折性質(zhì)得,∠BOG=∠B′OG,∵∠AOB′+∠BOG+∠B′OG=180°,∴∠B′OG=(180°﹣∠AOB′)=(180°﹣70°)=55°.故答案為55°.【點睛】考核知識點:補角,折疊.14、b2【解析】該題考查因式分解的定義首先可以提取一個公共項b,所以a2b+2ab+b=b(a2+2a+1)再由完全平方公式(x1+x2)2=x12+x22+2x1x2所以a2b+2ab+b=b(a2+2a+1)=b215、2:1【解析】先根據(jù)相似三角形面積的比是4:9,求出其相似比是2:1,再根據(jù)其對應(yīng)的角平分線的比等于相似比,可知它們對應(yīng)的角平分線比是2:1.故答案為2:1.點睛:本題考查的是相似三角形的性質(zhì),即相似三角形對應(yīng)邊的比、對應(yīng)高線的比、對應(yīng)角平分線的比、周長的比都等于相似比;面積的比等于相似比的平方.16、4【解析】

連接并延長交于G,連接并延長交于H,根據(jù)三角形的重心的概念可得,,,,即可求出GH的長,根據(jù)對應(yīng)邊成比例,夾角相等可得,根據(jù)相似三角形的性質(zhì)即可得答案.【詳解】如圖,連接并延長交于G,連接并延長交于H,∵點E、F分別是和的重心,∴,,,,∵,∴,∵,,∴,∵,∴,∴,∴,故答案為:4【點睛】本題考查了三角形重心的概念和性質(zhì)及相似三角形的判定與性質(zhì),三角形的重心是三角形中線的交點,三角形的重心到頂點的距離等于到對邊中點的距離的2倍.17、0.80【解析】

根據(jù)中位數(shù)的定義和平均數(shù)的求法計算即可,中位數(shù)是將一組數(shù)據(jù)按照從小到大(或從大到?。┑捻樞蚺帕?,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù).如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).【詳解】平均數(shù)=(?2+0?1+2+5)÷5=0.8;把這組數(shù)據(jù)按從大到小的順序排列是:5,2,0,-1,-2,故這組數(shù)據(jù)的中位數(shù)是:0.故答案為0.8;0.【點睛】本題考查了平均數(shù)與中位數(shù)的定義,解題的關(guān)鍵是熟練的掌握平均數(shù)與中位數(shù)的定義.18、①②【解析】

根據(jù)折疊的性質(zhì)可知,結(jié)合垂徑定理、三角形的性質(zhì)、同圓或等圓中圓周角與圓心的性質(zhì)等可以判斷①②是否正確,EO的最小值問題是個難點,這是一個動點問題,只要把握住E在什么軌跡上運動,便可解決問題.【詳解】如圖1,連接OA和OB,作OF⊥AB.

由題知:沿著弦AB折疊,正好經(jīng)過圓心O

∴OF=OA=OB

∴∠AOF=∠BOF=60°

∴∠AOB=120°

∴∠ACB=120°(同弧所對圓周角相等)

∠D=∠AOB=60°(同弧所對的圓周角是圓心角的一半)

∴∠ACD=180°-∠ACB=60°

∴△ACD是等邊三角形(有兩個角是60°的三角形是等邊三角形)

故,①②正確

下面研究問題EO的最小值是否是1

如圖2,連接AE和EF

∵△ACD是等邊三角形,E是CD中點

∴AE⊥BD(三線合一)

又∵OF⊥AB

∴F是AB中點

即,EF是△ABE斜邊中線

∴AF=EF=BF

即,E點在以AB為直徑的圓上運動.

所以,如圖3,當(dāng)E、O、F在同一直線時,OE長度最小

此時,AE=EF,AE⊥EF

∵⊙O的半徑是2,即OA=2,OF=1

∴AF=(勾股定理)

∴OE=EF-OF=AF-OF=-1

所以,③不正確

綜上所述:①②正確,③不正確.

故答案是:①②.【點睛】考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.推論:半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑.也考查了垂徑定理.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)該公司計劃購進A種品牌的教學(xué)設(shè)備20套,購進B種品牌的教學(xué)設(shè)備30套;(2)A種品牌的教學(xué)設(shè)備購進數(shù)量至多減少1套.【解析】

(1)設(shè)該公司計劃購進A種品牌的教學(xué)設(shè)備x套,購進B種品牌的教學(xué)設(shè)備y套,根據(jù)花11萬元購進兩種設(shè)備銷售后可獲得利潤12萬元,即可得出關(guān)于x、y的二元一次方程組,解之即可得出結(jié)論;(2)設(shè)A種品牌的教學(xué)設(shè)備購進數(shù)量減少m套,則B種品牌的教學(xué)設(shè)備購進數(shù)量增加1.5m套,根據(jù)總價=單價×數(shù)量結(jié)合用于購進這兩種教學(xué)設(shè)備的總資金不超過18萬元,即可得出關(guān)于m的一元一次不等式,解之取其中最大的整數(shù)即可得出結(jié)論.【詳解】解:(1)設(shè)該公司計劃購進A種品牌的教學(xué)設(shè)備x套,購進B種品牌的教學(xué)設(shè)備y套,根據(jù)題意得:解得:.答:該公司計劃購進A種品牌的教學(xué)設(shè)備20套,購進B種品牌的教學(xué)設(shè)備30套.(2)設(shè)A種品牌的教學(xué)設(shè)備購進數(shù)量減少m套,則B種品牌的教學(xué)設(shè)備購進數(shù)量增加1.5m套,根據(jù)題意得:1.5(20﹣m)+1.2(30+1.5m)≤18,解得:m≤,∵m為整數(shù),∴m≤1.答:A種品牌的教學(xué)設(shè)備購進數(shù)量至多減少1套.【點睛】本題考查了二元一次方程組的應(yīng)用以及一元一次不等式的應(yīng)用,解題的關(guān)鍵是:(1)找準等量關(guān)系,正確列出二元一次方程組;(2)根據(jù)各數(shù)量間的關(guān)系,正確列出一元一次不等式.20、詳見解析.【解析】試題分析:(1)根據(jù)定義分別求解即可求得答案;(1)①首先由函數(shù)y=1x1﹣bx=x,求得x(1x﹣b﹣1)=2,然后由其不變長度為零,求得答案;②由①,利用1≤b≤3,可求得其不變長度q的取值范圍;(3)由記函數(shù)y=x1﹣1x(x≥m)的圖象為G1,將G1沿x=m翻折后得到的函數(shù)圖象記為G1,可得函數(shù)G的圖象關(guān)于x=m對稱,然后根據(jù)定義分別求得函數(shù)的不變值,再分類討論即可求得答案.試題解析:解:(1)∵函數(shù)y=x﹣1,令y=x,則x﹣1=x,無解;∴函數(shù)y=x﹣1沒有不變值;∵y=x-1=,令y=x,則,解得:x=±1,∴函數(shù)的不變值為±1,q=1﹣(﹣1)=1.∵函數(shù)y=x1,令y=x,則x=x1,解得:x1=2,x1=1,∴函數(shù)y=x1的不變值為:2或1,q=1﹣2=1;(1)①函數(shù)y=1x1﹣bx,令y=x,則x=1x1﹣bx,整理得:x(1x﹣b﹣1)=2.∵q=2,∴x=2且1x﹣b﹣1=2,解得:b=﹣1;②由①知:x(1x﹣b﹣1)=2,∴x=2或1x﹣b﹣1=2,解得:x1=2,x1=.∵1≤b≤3,∴1≤x1≤1,∴1﹣2≤q≤1﹣2,∴1≤q≤1;(3)∵記函數(shù)y=x1﹣1x(x≥m)的圖象為G1,將G1沿x=m翻折后得到的函數(shù)圖象記為G1,∴函數(shù)G的圖象關(guān)于x=m對稱,∴G:y=.∵當(dāng)x1﹣1x=x時,x3=2,x4=3;當(dāng)(1m﹣x)1﹣1(1m﹣x)=x時,△=1+8m,當(dāng)△<2,即m<﹣時,q=x4﹣x3=3;當(dāng)△≥2,即m≥﹣時,x5=,x6=.①當(dāng)﹣≤m≤2時,x3=2,x4=3,∴x6<2,∴x4﹣x6>3(不符合題意,舍去);②∵當(dāng)x5=x4時,m=1,當(dāng)x6=x3時,m=3;當(dāng)2<m<1時,x3=2(舍去),x4=3,此時2<x5<x4,x6<2,q=x4﹣x6>3(舍去);當(dāng)1≤m≤3時,x3=2(舍去),x4=3,此時2<x5<x4,x6>2,q=x4﹣x6<3;當(dāng)m>3時,x3=2(舍去),x4=3(舍去),此時x5>3,x6<2,q=x5﹣x6>3(舍去);綜上所述:m的取值范圍為1≤m≤3或m<﹣.點睛:本題屬于二次函數(shù)的綜合題,考查了二次函數(shù)、反比例函數(shù)、一次函數(shù)的性質(zhì)以及函數(shù)的對稱性.注意掌握分類討論思想的應(yīng)用是解答此題的關(guān)鍵.21、(1)y=﹣x2+2x+1;(2)當(dāng)△MAC是直角三角形時,點M的坐標為(1,)或(1,﹣).【解析】

(1)由點A、C的坐標,利用待定系數(shù)法即可求出拋物線的解析式;(2)設(shè)點M的坐標為(1,m),則CM=,AC=,AM=,分∠ACM=90°和∠CAM=90°兩種情況,利用勾股定理可得出關(guān)于m的方程,解之可得出m的值,進而即可得出點M的坐標.【詳解】(1)將A(﹣1,0)、C(0,1)代入y=﹣x2+bx+c中,得:,解得:,∴拋物線的解析式為y=﹣x2+2x+1.(2)∵y=﹣x2+2x+1=﹣(x﹣1)2+4,設(shè)點M的坐標為(1,m),則CM=,AC==,AM=.分兩種情況考慮:①當(dāng)∠ACM=90°時,有AM2=AC2+CM2,即4+m2=10+1+(m﹣1)2,解得:m=,∴點M的坐標為(1,);②當(dāng)∠CAM=90°時,有CM2=AM2+AC2,即1+(m﹣1)2=4+m2+10,解得:m=﹣,∴點M的坐標為(1,﹣).綜上所述:當(dāng)△MAC是直角三角形時,點M的坐標為(1,)或(1,﹣).【點睛】本題考查二次函數(shù)的綜合問題,解題的關(guān)鍵是掌握待定系數(shù)法求二次函數(shù)解析式、二次函數(shù)圖象的點的坐標特征以及勾股定理等知識點.22、(1)50人;(2)補圖見解析;(3).【解析】分析:(1)根據(jù)化學(xué)學(xué)科人數(shù)及其所占百分比可得總?cè)藬?shù);(2)根據(jù)各學(xué)科人數(shù)之和等于總?cè)藬?shù)求得歷史的人數(shù)即可;(3)列表得出所有等可能結(jié)果,從中找到恰好選中化學(xué)、歷史兩科的結(jié)果數(shù),再利用概率公式計算可得.詳解:(1)該班學(xué)生總數(shù)為10÷20%=50人;(2)歷史學(xué)科的人數(shù)為50﹣(5+10+15+6+6)=8人,補全圖形如下:(3)列表如下:化學(xué)生物政治歷史地理化學(xué)生物、化學(xué)政治、化學(xué)歷史、化學(xué)地理、化學(xué)生物化學(xué)、生物政治、生物歷史、生物地理、生物政治化學(xué)、政治生物、政治歷史、政治地理、政治歷史化學(xué)、歷史生物、歷史政治、歷史地理、歷史地理化學(xué)、地理生物、地理政治、地理歷史、地理由表可知,共有20種等可能結(jié)果,其中該同學(xué)恰好選中化學(xué)、歷史兩科的有2種結(jié)果,所以該同學(xué)恰好選中化學(xué)、歷史兩科的概率為.點睛:本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式求事件A或B的概率.23、(1)y=﹣x2+2x+3;(2)d=﹣t2+4t﹣3;(3)P(,).【解析】

(1)由拋物線y=ax2+bx+3與y軸交于點A,可求得點A的坐標,又OA=OC,可求得點C的坐標,然后分別代入B,C的坐標求出a,b,即可求得二次函數(shù)的解析式;(2)首先延長PE交x軸于點H,現(xiàn)將解析式換為頂點解析式求得D(1,4),設(shè)直線CD的解析式為y=kx+b,再將點C(3,0)、D(1,4)代入,得y=﹣2x+6,則E(t,﹣2t+6),P(t,﹣t2+2t+3),PH=﹣t2+2t+3,EH=﹣2t+6,再根據(jù)d=PH﹣EH即可得答案;(3)首先,作DK⊥OC于點K,作QM∥x軸交DK于點T,延長PE、EP交OC于H、交QM于M,作ER⊥DK于點R,記QE與DK的交點為N,根據(jù)題意在(2)的條件下先證明△DQT≌△ECH,再根據(jù)全等三角形的性質(zhì)即可得ME=4﹣2(﹣2t+6),QM=t﹣1+(3﹣t),即可求得答案.【詳解】解:(1)當(dāng)x=0時,y=3,∴A(0,3)即OA=3,∵OA=OC,∴OC=3,∴C(3,0),∵拋物線y=ax2+bx+3經(jīng)過點B(﹣1,0),C(3,0)∴,解得:,∴拋物線的解析式為:y=﹣x2+2x+3;(2)如圖1,延長PE交x軸于點H,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),設(shè)直線CD的解析式為y=kx+b,將點C(3,0)、D(1,4)代入,得:,解得:,∴y=﹣2x+6,∴E(t,﹣2t+6),P(t,﹣t2+2t+3),∴PH=﹣t2+2t+3,EH=﹣2t+6,∴d=PH﹣EH=﹣t2+2t+3﹣(﹣2t+6)=﹣t2+4t﹣3;(3)如圖2,作DK⊥OC于點K,作QM∥x軸交DK于點T,延長PE、EP交OC于H、交QM于M,作ER⊥DK于點R,記QE與DK的交點為N,∵D(1,4),B(﹣1,0),C(3,0),∴BK=2,KC=2,∴DK垂直平分BC,∴BD=CD,∴∠BDK=∠CDK,∵∠BQE=∠QDE+∠DEQ,∠BQE+∠DEQ=90°,∴∠QDE+∠DEQ+∠DEQ=90°,即2∠CDK+2∠DEQ=90°,∴∠CDK+∠DEQ=45°,即∠RNE=45°,∵ER⊥DK,∴∠NER=45°,∴∠MEQ=∠MQE=45°,∴QM=ME,∵DQ=CE,∠DTQ=∠EHC、∠QDT=∠CEH,∴△DQT≌△ECH,∴DT=EH,QT=CH,∴ME=4﹣2(﹣2t+6),QM=MT+QT=MT+CH=t﹣1+(3﹣t),4﹣2(﹣2t+6)=t﹣1+(3﹣t),解得:t=,∴P(,).【點睛】本題考查了二次函數(shù)的綜合題,解題的關(guān)鍵是熟練的掌握二次函數(shù)的相關(guān)知識點.24、(1)CH=AB.;(2)成立,證明見解析;(3)【解析】

(1)首先根據(jù)全等三角形判定的方法,判斷出△ABF≌△CBE,即可判斷出∠1=∠2;然后根據(jù)EH⊥BF,∠BCE=90°,可得C、H兩點都在以BE為直徑的圓上,判斷出∠4=∠HBC,即可判斷出CH=BC,最后根據(jù)AB=BC,判斷出CH=AB即可.(2)首先根據(jù)全等三角形判定的方法,判斷出△ABF≌△CBE,即可判斷出∠1=∠2;然后根據(jù)EH⊥BF,∠BCE=90°,可得C、H兩點都在以BE為直徑的圓上,判斷出∠4=∠HBC,即可判斷出CH=BC,最后根據(jù)AB=BC,判斷出CH=AB即可.(3)首先根據(jù)三角形三邊的關(guān)系,可得CK<AC+AK,據(jù)此判斷出當(dāng)C、A、K三點共線時,CK的長最大;然后根據(jù)全等三角形判定的方法,判斷出△DFK≌△DEH,即可判斷出DK=DH,再根據(jù)全等三角形判定的方法,判斷出△DAK≌△DCH,即可判斷出AK=CH=AB;最后根據(jù)CK=AC+AK=AC+AB,求出線段CK長的最大值是多少即可.【詳解】解:(1)如圖1,連接BE,,在正方形ABCD中,AB=BC=CD=AD,∠A=∠BCD=∠ABC=90°,∵點E是DC的中點,DE=EC,∴點F是AD的中點,∴AF=FD,∴EC=AF,在△ABF和△CBE中,∴△ABF≌△CBE,∴∠1=∠2,∵EH⊥BF,∠BCE=90°,∴C、H兩點都在以BE為直徑的圓上,∴∠3=∠2,∴∠1=∠3,∵∠3+∠4=90°,∠1+∠HBC=90°,∴∠4=∠HBC,∴CH=BC,又∵AB=BC,∴CH=AB.(2)當(dāng)點E在DC邊上且不是DC的中點時,(1)中的結(jié)論CH=AB仍然成立.如圖2,連接BE,,在正方形ABCD中,AB=BC=CD=AD,∠A=∠BCD=∠ABC=90°,∵AD=CD,DE=DF,∴AF=CE,在△ABF和△CBE中,∴△ABF≌△CBE,∴∠1=∠2,∵EH⊥BF,∠BCE=90°,∴C、H兩點都在以BE為直徑的圓上,∴∠3=∠2,∴∠1=∠3,∵∠3+∠4=90°,∠1+∠HBC=90°,∴∠4=∠HBC,∴CH=BC,又∵AB=BC,∴CH=AB.(3)如圖3,,∵CK≤AC+AK,∴當(dāng)C、A、K三點共線時,CK的長最大,∵∠KDF+∠ADH=90°,∠HDE+∠ADH=90°,∴∠KDF=∠HDE,∵∠DEH+∠DFH=360°-∠ADC-∠EHF=360°-90°-90°=180°,∠DFK+∠DFH=180°,∴∠DFK=∠DEH,在△DFK和△DEH中,∴△DFK≌△DEH,∴DK=DH,在△DAK和△DCH中,∴△DAK≌△DCH,∴AK=CH又∵CH=AB,∴AK=CH=AB,∵AB=3,∴AK=3,AC=3,∴CK=AC+AK=AC+AB=,即線段CK長的最大值是.考點:四邊形綜合題.25、(1)作圖見解析;(2)EB是平分∠AEC,理由見解析;(3)△PFB能由都經(jīng)過P點的兩次變換與△PAE組成一個等腰三角形,變換的方法為:將△BPF繞點B順時針旋轉(zhuǎn)120°和△EPA重合,①沿PF折疊,②沿AE折疊.【解析】【分析】(1)根據(jù)作線段的垂直平分線的方法作圖即可得出結(jié)論;(2)先求出DE=CE=1,進而判斷出△ADE≌△BCE,得出∠AED=∠BEC,再用銳角三角函數(shù)求出∠AED,即可得出結(jié)論;(3)先判斷出△AEP≌△FBP,即可得出結(jié)論.【詳解】(1)依題意作出圖形如圖①所示;(2)EB是

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論