![河北省石家莊第四十二中學2021-2022學年畢業(yè)升學考試模擬卷數學卷含解析_第1頁](http://file4.renrendoc.com/view/15d5e242d75698243edf12f6a5bde95f/15d5e242d75698243edf12f6a5bde95f1.gif)
![河北省石家莊第四十二中學2021-2022學年畢業(yè)升學考試模擬卷數學卷含解析_第2頁](http://file4.renrendoc.com/view/15d5e242d75698243edf12f6a5bde95f/15d5e242d75698243edf12f6a5bde95f2.gif)
![河北省石家莊第四十二中學2021-2022學年畢業(yè)升學考試模擬卷數學卷含解析_第3頁](http://file4.renrendoc.com/view/15d5e242d75698243edf12f6a5bde95f/15d5e242d75698243edf12f6a5bde95f3.gif)
![河北省石家莊第四十二中學2021-2022學年畢業(yè)升學考試模擬卷數學卷含解析_第4頁](http://file4.renrendoc.com/view/15d5e242d75698243edf12f6a5bde95f/15d5e242d75698243edf12f6a5bde95f4.gif)
![河北省石家莊第四十二中學2021-2022學年畢業(yè)升學考試模擬卷數學卷含解析_第5頁](http://file4.renrendoc.com/view/15d5e242d75698243edf12f6a5bde95f/15d5e242d75698243edf12f6a5bde95f5.gif)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022中考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.方程x2﹣3x=0的根是()A.x=0 B.x=3 C., D.,2.函數的圖象上有兩點,,若,則()A. B. C. D.、的大小不確定3.從3、1、-2這三個數中任取兩個不同的數作為P點的坐標,則P點剛好落在第四象限的概率是()A. B. C. D.4.拋物線的頂點坐標是()A.(2,3) B.(-2,3) C.(2,-3) D.(-2,-3)5.函數y=的自變量x的取值范圍是()A.x≠2 B.x<2 C.x≥2 D.x>26.整數a、b在數軸上對應點的位置如圖,實數c在數軸上且滿足,如果數軸上有一實數d,始終滿足,則實數d應滿足().A. B. C. D.7.如圖,有一塊含有30°角的直角三角板的兩個頂點放在直尺的對邊上.如果∠2=44°,那么∠1的度數是()A.14°B.15°C.16°D.17°8.某市2010年元旦這天的最高氣溫是8℃,最低氣溫是﹣2℃,則這天的最高氣溫比最低氣溫高()A.10℃ B.﹣10℃ C.6℃ D.﹣6℃9.下列各運算中,計算正確的是()A.a12÷a3=a4 B.(3a2)3=9a6C.(a﹣b)2=a2﹣ab+b2 D.2a?3a=6a210.已知點A、B、C是直徑為6cm的⊙O上的點,且AB=3cm,AC=3cm,則∠BAC的度數為()A.15°
B.75°或15°
C.105°或15°
D.75°或105°二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖AB是直徑,C、D、E為圓周上的點,則______.12.如圖,BD是⊙O的直徑,BA是⊙O的弦,過點A的切線交BD延長線于點C,OE⊥AB于E,且AB=AC,若CD=2,則OE的長為_____.13.如圖,線段AC=n+1(其中n為正整數),點B在線段AC上,在線段AC同側作正方形ABMN及正方形BCEF,連接AM、ME、EA得到△AME.當AB=1時,△AME的面積記為S1;當AB=2時,△AME的面積記為S2;當AB=3時,△AME的面積記為S3;…;當AB=n時,△AME的面積記為Sn.當n≥2時,Sn﹣Sn﹣1=▲.14.若函數y=m-2x15.如圖,點G是的重心,AG的延長線交BC于點D,過點G作交AC于點E,如果,那么線段GE的長為______.16.墊球是排球隊常規(guī)訓練的重要項目之一.如圖所示的數據是運動員張華十次墊球測試的成績.測試規(guī)則為每次連續(xù)接球10個,每墊球到位1個記1分.則運動員張華測試成績的眾數是_____.三、解答題(共8題,共72分)17.(8分)已知如圖①Rt△ABC和Rt△EDC中,∠ACB=∠ECD=90°,A,C,D在同一條直線上,點M,N,F分別為AB,ED,AD的中點,∠B=∠EDC=45°,(1)求證MF=NF(2)當∠B=∠EDC=30°,A,C,D在同一條直線上或不在同一條直線上,如圖②,圖③這兩種情況時,請猜想線段MF,NF之間的數量關系.(不必證明)18.(8分)如圖,在平面直角坐標系xOy中,將拋物線y=x2平移,使平移后的拋物線經過點A(–3,0)、B(1,0).(1)求平移后的拋物線的表達式.(2)設平移后的拋物線交y軸于點C,在平移后的拋物線的對稱軸上有一動點P,當BP與CP之和最小時,P點坐標是多少?(3)若y=x2與平移后的拋物線對稱軸交于D點,那么,在平移后的拋物線的對稱軸上,是否存在一點M,使得以M、O、D為頂點的三角形△BOD相似?若存在,求點M坐標;若不存在,說明理由.19.(8分)一位運動員推鉛球,鉛球運行時離地面的高度(米)是關于運行時間(秒)的二次函數.已知鉛球剛出手時離地面的高度為米;鉛球出手后,經過4秒到達離地面3米的高度,經過10秒落到地面.如圖建立平面直角坐標系.(Ⅰ)為了求這個二次函數的解析式,需要該二次函數圖象上三個點的坐標.根據題意可知,該二次函數圖象上三個點的坐標分別是____________________________;(Ⅱ)求這個二次函數的解析式和自變量的取值范圍.20.(8分)據報道,“國際剪刀石頭布協(xié)會”提議將“剪刀石頭布”作為奧運會比賽項目.某校學生會想知道學生對這個提議的了解程度,隨機抽取部分學生進行了一次問卷調查,并根據收集到的信息進行了統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.請你根據統(tǒng)計圖中所提供的信息解答下列問題:(1)接受問卷調查的學生共有___名,扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角為___;請補全條形統(tǒng)計圖;(2)若該校共有學生900人,請根據上述調查結果,估計該校學生中對將“剪刀石頭布”作為奧運會比賽項目的提議達到“了解”和“基本了解”程度的總人數;(3)“剪刀石頭布”比賽時雙方每次任意出“剪刀”、“石頭”、“布”這三種手勢中的一種,規(guī)則為:剪刀勝布,布勝石頭,石頭勝剪刀,若雙方出現(xiàn)相同手勢,則算打平.若小剛和小明兩人只比賽一局,請用樹狀圖或列表法求兩人打平的概率.21.(8分)如圖,BD是△ABC的角平分線,點E,F(xiàn)分別在BC,AB上,且DE∥AB,BE=AF.(1)求證:四邊形ADEF是平行四邊形;(2)若∠ABC=60°,BD=6,求DE的長.22.(10分)已知關于x的方程.當該方程的一個根為1時,求a的值及該方程的另一根;求證:不論a取何實數,該方程都有兩個不相等的實數根.23.(12分)如圖,正方形ABCD中,M為BC上一點,F(xiàn)是AM的中點,EF⊥AM,垂足為F,交AD的延長線于點E,交DC于點N.求證:△ABM∽△EFA;若AB=12,BM=5,求DE的長.24.某文教店老板到批發(fā)市場選購A、B兩種品牌的繪圖工具套裝,每套A品牌套裝進價比B品牌每套套裝進價多2.5元,已知用200元購進A種套裝的數量是用75元購進B種套裝數量的2倍.求A、B兩種品牌套裝每套進價分別為多少元?若A品牌套裝每套售價為13元,B品牌套裝每套售價為9.5元,店老板決定,購進B品牌的數量比購進A品牌的數量的2倍還多4套,兩種工具套裝全部售出后,要使總的獲利超過120元,則最少購進A品牌工具套裝多少套?
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
先將方程左邊提公因式x,解方程即可得答案.【詳解】x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3,故選:D.【點睛】本題考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接開平方法、公式法、因式分解法等,熟練掌握并靈活運用適當的方法是解題關鍵.2、A【解析】
根據x1、x1與對稱軸的大小關系,判斷y1、y1的大小關系.【詳解】解:∵y=-1x1-8x+m,∴此函數的對稱軸為:x=-=-=-1,∵x1<x1<-1,兩點都在對稱軸左側,a<0,∴對稱軸左側y隨x的增大而增大,∴y1<y1.故選A.【點睛】此題主要考查了函數的對稱軸求法和函數的單調性,利用二次函數的增減性解題時,利用對稱軸得出是解題關鍵.3、B【解析】解:畫樹狀圖得:∵共有6種等可能的結果,其中(1,-2),(3,-2)點落在第四項象限,∴P點剛好落在第四象限的概率==.故選B.點睛:本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件,熟記各象限內點的符號特點是解題的關鍵.4、A【解析】
已知解析式為頂點式,可直接根據頂點式的坐標特點,求頂點坐標.【詳解】解:y=(x-2)2+3是拋物線的頂點式方程,根據頂點式的坐標特點可知,頂點坐標為(2,3).故選A.【點睛】此題主要考查了二次函數的性質,關鍵是熟記:頂點式y(tǒng)=a(x-h)2+k,頂點坐標是(h,k),對稱軸是x=h.5、D【解析】
根據被開放式的非負性和分母不等于零列出不等式即可解題.【詳解】解:∵函數y=有意義,∴x-20,即x>2故選D【點睛】本題考查了根式有意義的條件,屬于簡單題,注意分母也不能等于零是解題關鍵.6、D【解析】
根據a≤c≤b,可得c的最小值是﹣1,根據有理數的加法,可得答案.【詳解】由a≤c≤b,得:c最小值是﹣1,當c=﹣1時,c+d=﹣1+d,﹣1+d≥0,解得:d≥1,∴d≥b.故選D.【點睛】本題考查了實數與數軸,利用a≤c≤b得出c的最小值是﹣1是解題的關鍵.7、C【解析】
依據∠ABC=60°,∠2=44°,即可得到∠EBC=16°,再根據BE∥CD,即可得出∠1=∠EBC=16°.【詳解】如圖,∵∠ABC=60°,∠2=44°,∴∠EBC=16°,∵BE∥CD,∴∠1=∠EBC=16°,故選:C.【點睛】本題主要考查了平行線的性質,解題時注意:兩直線平行,內錯角相等.8、A【解析】
用最高氣溫減去最低氣溫,再根據有理數的減法運算法則“減去一個數等于加上這個數的相反數”即可求得答案.【詳解】8-(-2)=8+2=10℃.即這天的最高氣溫比最低氣溫高10℃.故選A.9、D【解析】【分析】根據同底數冪的除法、積的乘方、完全平方公式、單項式乘法的法則逐項計算即可得.【詳解】A、原式=a9,故A選項錯誤,不符合題意;B、原式=27a6,故B選項錯誤,不符合題意;C、原式=a2﹣2ab+b2,故C選項錯誤,不符合題意;D、原式=6a2,故D選項正確,符合題意,故選D.【點睛】本題考查了同底數冪的除法、積的乘方、完全平方公式、單項式乘法等運算,熟練掌握各運算的運算法則是解本題的關鍵.10、C【解析】解:如圖1.∵AD為直徑,∴∠ABD=∠ACD=90°.在Rt△ABD中,AD=6,AB=3,則∠BDA=30°,∠BAD=60°.在Rt△ABD中,AD=6,AC=3,∠CAD=45°,則∠BAC=105°;如圖2,.∵AD為直徑,∴∠ABD=∠ABC=90°.在Rt△ABD中,AD=6,AB=3,則∠BDA=30°,∠BAD=60°.在Rt△ABC中,AD=6,AC=3,∠CAD=45°,則∠BAC=15°.故選C.點睛:本題考查的是圓周角定理和銳角三角函數的知識,掌握直徑所對的圓周角是直徑和熟記特殊角的三角函數值是解題的關鍵,注意分情況討論思想的運用.二、填空題(本大題共6個小題,每小題3分,共18分)11、90°【解析】
連接OE,根據圓周角定理即可求出答案.【詳解】解:連接OE,
根據圓周角定理可知:
∠C=∠AOE,∠D=∠BOE,
則∠C+∠D=(∠AOE+∠BOE)=90°,
故答案為:90°.【點睛】本題主要考查了圓周角定理,解題要掌握在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.12、【解析】
連接OA,所以∠OAC=90°,因為AB=AC,所以∠B=∠C,根據圓周角定理可知∠AOD=2∠B=2∠C,故可求出∠B和∠C的度數,在Rt△OAC中,求出OA的值,再在Rt△OAE中,求出OE的值,得到答案.【詳解】連接OA,由題意可知∠OAC=90°,∵AB=AC,∴∠B=∠C,根據圓周角定理可知∠AOD=2∠B=2∠C,∵∠OAC=90°∴∠C+∠AOD=90°,∴∠C+2∠C=90°,故∠C=30°=∠B,∴在Rt△OAC中,sin∠C==,∴OC=2OA,∵OA=OD,∴OD+CD=2OA,∴CD=OA=2,∵OB=OA,∴∠OAE=∠B=30°,∴在Rt△OAE中,sin∠OAE==,∴OA=2OE,∴OE=OA=,故答案為.【點睛】本題主要考查了圓周角定理,角的轉換,以及在直角三角形中的三角函數的運用,解本題的要點在于求出OA的值,從而利用直角三角形的三角函數的運用求出答案.13、【解析】連接BE,∵在線段AC同側作正方形ABMN及正方形BCEF,∴BE∥AM.∴△AME與△AMB同底等高.∴△AME的面積=△AMB的面積.∴當AB=n時,△AME的面積為,當AB=n-1時,△AME的面積為.∴當n≥2時,14、m>2【解析】試題分析:有函數y=m考點:反比例函數的性質.15、2【解析】分析:由點G是△ABC重心,BC=6,易得CD=3,AG:AD=2:3,又由GE∥BC,可證得△AEG∽△ACD,然后由相似三角形的對應邊成比例,即可求得線段GE的長.詳解:∵點G是△ABC重心,BC=6,∴CD=BC=3,AG:AD=2:3,∵GE∥BC,∴△AEG∽△ADC,∴GE:CD=AG:AD=2:3,∴GE=2.故答案為2.點睛:本題考查了三角形重心的定義和性質、相似三角形的判定和性質.利用三角形重心的性質得出AG:AD=2:3是解題的關鍵.16、1【解析】
根據眾數定義:一組數據中出現(xiàn)次數最多的數據叫做眾數可得答案.【詳解】運動員張華測試成績的眾數是1.故答案為1.【點睛】本題主要考查了眾數,關鍵是掌握眾數定義.三、解答題(共8題,共72分)17、(1)見解析;(2)MF=NF.【解析】
(1)連接AE,BD,先證明△ACE和△BCD全等,然后得到AE=BD,然后再通過三角形中位線證明即可.(2)根據圖(2)(3)進行合理猜想即可.【詳解】解:(1)連接AE,BD在△ACE和△BCD中∴△ACE≌△BCD∴AE=BD又∵點M,N,F分別為AB,ED,AD的中點∴MF=BD,NF=AE∴MF=NF(2)MF=NF.方法同上.【點睛】本題考查了三角形全等的判定和性質以及三角形中位線的知識,做出輔助線和合理猜想是解答本題的關鍵.18、(1)y=x2+2x﹣3;(2)點P坐標為(﹣1,﹣2);(3)點M坐標為(﹣1,3)或(﹣1,2).【解析】
(1)設平移后拋物線的表達式為y=a(x+3)(x-1).由題意可知平后拋物線的二次項系數與原拋物線的二次項系數相同,從而可求得a的值,于是可求得平移后拋物線的表達式;(2)先根據平移后拋物線解析式求得其對稱軸,從而得出點C關于對稱軸的對稱點C′坐標,連接BC′,與對稱軸交點即為所求點P,再求得直線BC′解析式,聯(lián)立方程組求解可得;(3)先求得點D的坐標,由點O、B、E、D的坐標可求得OB、OE、DE、BD的長,從而可得到△EDO為等腰三角直角三角形,從而可得到∠MDO=∠BOD=135°,故此當或時,以M、O、D為頂點的三角形與△BOD相似.由比例式可求得MD的長,于是可求得點M的坐標.【詳解】(1)設平移后拋物線的表達式為y=a(x+3)(x﹣1),∵由平移的性質可知原拋物線與平移后拋物線的開口大小與方向都相同,∴平移后拋物線的二次項系數與原拋物線的二次項系數相同,∴平移后拋物線的二次項系數為1,即a=1,∴平移后拋物線的表達式為y=(x+3)(x﹣1),整理得:y=x2+2x﹣3;(2)∵y=x2+2x﹣3=(x+1)2﹣4,∴拋物線對稱軸為直線x=﹣1,與y軸的交點C(0,﹣3),則點C關于直線x=﹣1的對稱點C′(﹣2,﹣3),如圖1,連接B,C′,與直線x=﹣1的交點即為所求點P,由B(1,0),C′(﹣2,﹣3)可得直線BC′解析式為y=x﹣1,則,解得,所以點P坐標為(﹣1,﹣2);(3)如圖2,由得,即D(﹣1,1),則DE=OD=1,∴△DOE為等腰直角三角形,∴∠DOE=∠ODE=45°,∠BOD=135°,OD=,∵BO=1,∴BD=,∵∠BOD=135°,∴點M只能在點D上方,∵∠BOD=∠ODM=135°,∴當或時,以M、O、D為頂點的三角形△BOD相似,①若,則,解得DM=2,此時點M坐標為(﹣1,3);②若,則,解得DM=1,此時點M坐標為(﹣1,2);綜上,點M坐標為(﹣1,3)或(﹣1,2).【點睛】本題主要考查的是二次函數的綜合應用,解答本題主要應用了平移的性質、翻折的性質、二次函數的圖象和性質、待定系數法求二次函數的解析式、等腰直角三角形的性質、相似三角形的判定,證得∠ODM=∠BOD=135°是解題的關鍵.19、(0,),(4,3)【解析】試題分析:(Ⅰ)根據“剛出手時離地面高度為米、經過4秒到達離地面3米的高度和經過1秒落到地面”可得三點坐標;(Ⅱ)利用待定系數法求解可得.試題解析:解:(Ⅰ)由題意知,該二次函數圖象上的三個點的坐標分別是(0,)、(4,3)、(1,0).故答案為:(0,)、(4,3)、(1,0).(Ⅱ)設這個二次函數的解析式為y=ax2+bx+c,將(Ⅰ)三點坐標代入,得:,解得:,所以所求拋物線解析式為y=﹣x2+x+,因為鉛球從運動員拋出到落地所經過的時間為1秒,所以自變量的取值范圍為0≤x≤1.20、(1)60;90°;統(tǒng)計圖詳見解析;(2)300;(3).【解析】試題分析:(1)由“了解很少”的人數除以占的百分比得出學生總數,求出“基本了解”的學生占的百分比,乘以360得到結果,補全條形統(tǒng)計圖即可;(2)求出“了解”和“基本了解”程度的百分比之和,乘以900即可得到結果;(3)列表得出所有等可能的情況數,找出兩人打平的情況數,即可求出所求的概率.試題解析:(1)根據題意得:30÷50%=60(名),“了解”人數為60﹣(15+30+10)=5(名),“基本了解”占的百分比為×100%=25%,占的角度為25%×360°=90°,補全條形統(tǒng)計圖如圖所示:(2)根據題意得:900×=300(人),則估計該校學生中對將“剪刀石頭布”作為奧運會比賽項目的提議達到“了解”和“基本了解”程度的總人數為300人;(3)列表如下:剪石布剪(剪,剪)(石,剪)(布,剪)石(剪,石)(石,石)(布,石)布(剪,布)(石,布)(布,布)所有等可能的情況有9種,其中兩人打平的情況有3種,則P==.考點:1、條形統(tǒng)計圖,2、扇形統(tǒng)計圖,3、列表法與樹狀圖法21、(1)證明見解析;(2).【解析】
(1)由BD是△ABC的角平分線,DE∥AB,可證得△BDE是等腰三角形,且BE=DE;又由BE=AF,可得DE=AF,即可證得四邊形ADEF是平行四邊形;(2)過點E作EH⊥BD于點H,由∠ABC=60°,BD是∠ABC的平分線,可求得BH的長,從而求得BE、DE的長,即可求得答案.【詳解】(1)證明:∵BD是△ABC的角平分線,∴∠ABD=∠DBE,∵DE∥AB,∴∠ABD=∠BDE,∴∠DBE=∠BDE,∴BE=DE;∵BE=AF,∴AF=DE;∴四邊形ADEF是平行四邊形;(2)解:過點E作EH⊥BD于點H.∵∠ABC=60°,BD是∠ABC的平分線,∴∠ABD=∠EBD=30°,∴DH=BD=×6=3,∵BE=DE,∴BH=DH=3,∴BE==,∴DE=BE=.【點睛】此題考查了平行四邊形的判定與性質、等腰三角形的判定與性質以及三角函數等知識.注意掌握輔助線的作法.22、(1),;(2)證明見解析.【解析】試題分析:(1)根據一元二次方程根與系數的關系列方程組求解即可.(2)要證方程都有兩個不相等的實數根,只要證明根的判別式大于0即可.試題解析:(1)設方
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年企業(yè)物料策劃供應合同協(xié)議
- 2025年律師事務所服務協(xié)議標準文本
- 2025年通信電源項目申請報告模板
- 2025年穿水冷卻裝置項目提案報告
- 2025年住宅銷售經紀服務協(xié)議
- 2025年市場準入合規(guī)策劃合作框架協(xié)議
- 2025年企業(yè)簽訂網絡安全協(xié)議
- 2025年企業(yè)股東間保密協(xié)議策劃樣本
- 2025年實習生供求策劃協(xié)議書模板
- 2025年丹陽市美容院股東權益策劃與分配合同書
- 2025年空白離婚協(xié)議書
- 校長在行政會上總結講話結合新課標精神給學校管理提出3點建議
- T-CSUS 69-2024 智慧水務技術標準
- 《零起點學中醫(yī)》課件
- 2025年護理質量與安全管理工作計劃
- 湖南大學 嵌入式開發(fā)與應用(張自紅)教案
- 地下商業(yè)街的規(guī)劃設計
- 長安大學《畫法幾何與機械制圖一》2021-2022學年第一學期期末試卷
- 2024-2030年全球及中國低密度聚乙烯(LDPE)行業(yè)需求動態(tài)及未來發(fā)展趨勢預測報告
- DB14T+3154-2024泡沫瀝青就地冷再生路面施工技術規(guī)范
- 機電設備及工藝作業(yè)指導書
評論
0/150
提交評論