江蘇省連云港市沙河中學(xué)2021-2022學(xué)年中考數(shù)學(xué)對點(diǎn)突破模擬試卷含解析_第1頁
江蘇省連云港市沙河中學(xué)2021-2022學(xué)年中考數(shù)學(xué)對點(diǎn)突破模擬試卷含解析_第2頁
江蘇省連云港市沙河中學(xué)2021-2022學(xué)年中考數(shù)學(xué)對點(diǎn)突破模擬試卷含解析_第3頁
江蘇省連云港市沙河中學(xué)2021-2022學(xué)年中考數(shù)學(xué)對點(diǎn)突破模擬試卷含解析_第4頁
江蘇省連云港市沙河中學(xué)2021-2022學(xué)年中考數(shù)學(xué)對點(diǎn)突破模擬試卷含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2021-2022中考數(shù)學(xué)模擬試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,C,B是線段AD上的兩點(diǎn),若,,則AC與CD的關(guān)系為()A. B. C. D.不能確定2.下列安全標(biāo)志圖中,是中心對稱圖形的是()A. B. C. D.3.如圖,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于點(diǎn)D,PE⊥OB于點(diǎn)E.如果點(diǎn)M是OP的中點(diǎn),則DM的長是()A.2 B. C. D.24.如圖,在邊長為4的正方形ABCD中,E、F是AD邊上的兩個動點(diǎn),且AE=FD,連接BE、CF、BD,CF與BD交于點(diǎn)H,連接DH,下列結(jié)論正確的是()①△ABG∽△FDG②HD平分∠EHG③AG⊥BE④S△HDG:S△HBG=tan∠DAG⑤線段DH的最小值是2﹣2A.①②⑤ B.①③④⑤ C.①②④⑤ D.①②③④5.下列關(guān)于x的方程中一定沒有實數(shù)根的是()A. B. C. D.6.要使分式有意義,則x的取值范圍是()A.x= B.x> C.x< D.x≠7.如圖,△ABC中,BC=4,⊙P與△ABC的邊或邊的延長線相切.若⊙P半徑為2,△ABC的面積為5,則△ABC的周長為()A.8 B.10 C.13 D.148.若55+55+55+55+55=25n,則n的值為()A.10 B.6 C.5 D.39.如圖,要使□ABCD成為矩形,需添加的條件是()A.AB=BC B.∠ABC=90° C.AC⊥BD D.∠1=∠210.如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC,ED垂直平分AB于D,若AC=9,則AE的值是()A. B. C.6 D.411.某公司有11名員工,他們所在部門及相應(yīng)每人所創(chuàng)年利潤如下表所示,已知這11個數(shù)據(jù)的中位數(shù)為1.部門人數(shù)每人所創(chuàng)年利潤(單位:萬元)11938743這11名員工每人所創(chuàng)年利潤的眾數(shù)、平均數(shù)分別是A.10,1 B.7,8 C.1,6.1 D.1,612.下列四個圖案中,不是軸對稱圖案的是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.小蕓一家計劃去某城市旅行,需要做自由行的攻略,父母給她分配了一項任務(wù):借助網(wǎng)絡(luò)評價選取該城市的一家餐廳用餐.小蕓根據(jù)家人的喜好,選擇了甲、乙、丙三家餐廳,對每家餐廳隨機(jī)選取了1000條網(wǎng)絡(luò)評價,統(tǒng)計如下:評價條數(shù)等級餐廳五星四星三星二星一星合計甲53821096129271000乙460187154169301000丙4863888113321000(說明:網(wǎng)上對于餐廳的綜合評價從高到低,依次為五星、四星、三星、二星和一星.)小蕓選擇在________(填"甲”、“乙"或“丙”)餐廳用餐,能獲得良好用餐體驗(即評價不低于四星)的可能性最大.14.計算:=____.15.分式與的最簡公分母是_____.16.如圖,AB是半圓O的直徑,點(diǎn)C、D是半圓O的三等分點(diǎn),若弦CD=2,則圖中陰影部分的面積為.17.如圖1,在Rt△ABC中,∠ACB=90°,點(diǎn)P以每秒2cm的速度從點(diǎn)A出發(fā),沿折線AC﹣CB運(yùn)動,到點(diǎn)B停止.過點(diǎn)P作PD⊥AB,垂足為D,PD的長y(cm)與點(diǎn)P的運(yùn)動時間x(秒)的函數(shù)圖象如圖2所示.當(dāng)點(diǎn)P運(yùn)動5秒時,PD的長的值為_____.18.如圖,在直角坐標(biāo)系中,⊙A的圓心A的坐標(biāo)為(1,0),半徑為1,點(diǎn)P為直線y=x+3上的動點(diǎn),過點(diǎn)P作⊙A的切線,切點(diǎn)為Q,則切線長PQ的最小值是______________.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)目前節(jié)能燈在城市已基本普及,今年某省面向農(nóng)村地區(qū)推廣,為響應(yīng)號召,某商場用3300元購進(jìn)節(jié)能燈100只,這兩種節(jié)能燈的進(jìn)價、售價如表:進(jìn)價元只售價元只甲種節(jié)能燈3040乙種節(jié)能燈3550求甲、乙兩種節(jié)能燈各進(jìn)多少只?全部售完100只節(jié)能燈后,該商場獲利多少元?20.(6分)如圖,矩形ABCD中,E是AD的中點(diǎn),延長CE,BA交于點(diǎn)F,連接AC,DF.(1)求證:四邊形ACDF是平行四邊形;(2)當(dāng)CF平分∠BCD時,寫出BC與CD的數(shù)量關(guān)系,并說明理由.21.(6分)如圖,一個長方形運(yùn)動場被分隔成A、B、A、B、C共5個區(qū),A區(qū)是邊長為am的正方形,C區(qū)是邊長為bm的正方形.列式表示每個B區(qū)長方形場地的周長,并將式子化簡;列式表示整個長方形運(yùn)動場的周長,并將式子化簡;如果a=20,b=10,求整個長方形運(yùn)動場的面積.22.(8分)已知是上一點(diǎn),.如圖①,過點(diǎn)作的切線,與的延長線交于點(diǎn),求的大小及的長;如圖②,為上一點(diǎn),延長線與交于點(diǎn),若,求的大小及的長.23.(8分)(1)計算:;(2)化簡:.24.(10分)如圖,在平面直角坐標(biāo)系中,OA⊥OB,AB⊥x軸于點(diǎn)C,點(diǎn)A(,1)在反比例函數(shù)的圖象上.求反比例函數(shù)的表達(dá)式;在x軸的負(fù)半軸上存在一點(diǎn)P,使得S△AOP=S△AOB,求點(diǎn)P的坐標(biāo);若將△BOA繞點(diǎn)B按逆時針方向旋轉(zhuǎn)60°得到△BDE,直接寫出點(diǎn)E的坐標(biāo),并判斷點(diǎn)E是否在該反比例函數(shù)的圖象上,說明理由.25.(10分)A、B兩輛汽車同時從相距330千米的甲、乙兩地相向而行,s(千米)表示汽車與甲地的距離,t(分)表示汽車行駛的時間,如圖,L1,L2分別表示兩輛汽車的s與t的關(guān)系.(1)L1表示哪輛汽車到甲地的距離與行駛時間的關(guān)系?(2)汽車B的速度是多少?(3)求L1,L2分別表示的兩輛汽車的s與t的關(guān)系式.(4)2小時后,兩車相距多少千米?(5)行駛多長時間后,A、B兩車相遇?26.(12分)張老師在黑板上布置了一道題:計算:2(x+1)2﹣(4x﹣5),求當(dāng)x=和x=﹣時的值.小亮和小新展開了下面的討論,你認(rèn)為他們兩人誰說的對?并說明理由.27.(12分)如圖,在正方形ABCD的外側(cè),作兩個等邊三角形ABE和ADF,連結(jié)ED與FC交于點(diǎn)M,則圖中≌,可知,求得______.如圖,在矩形的外側(cè),作兩個等邊三角形ABE和ADF,連結(jié)ED與FC交于點(diǎn)M.求證:.若,求的度數(shù).

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

由AB=CD,可得AC=BD,又BC=2AC,所以BC=2BD,所以CD=3AC.【詳解】∵AB=CD,∴AC+BC=BC+BD,即AC=BD,又∵BC=2AC,∴BC=2BD,∴CD=3BD=3AC.故選B.【點(diǎn)睛】本題考查了線段長短的比較,在不同的情況下靈活選用它的不同表示方法,有利于解題的簡潔性.同時,靈活運(yùn)用線段的和、差、倍轉(zhuǎn)化線段之間的數(shù)量關(guān)系是十分關(guān)鍵的一點(diǎn).2、B【解析】試題分析:A.不是中心對稱圖形,故此選項不合題意;B.是中心對稱圖形,故此選項符合題意;C.不是中心對稱圖形,故此選項不符合題意;D.不是中心對稱圖形,故此選項不合題意;故選B.考點(diǎn):中心對稱圖形.3、C【解析】

由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性質(zhì),即可求得PE的值,繼而求得OP的長,然后由直角三角形斜邊上的中線等于斜邊的一半,即可求得DM的長.【詳解】解:∵OP平分∠AOB,∠AOB=60°,∴∠AOP=∠COP=30°,∵CP∥OA,∴∠AOP=∠CPO,∴∠COP=∠CPO,∴OC=CP=2,∵∠PCE=∠AOB=60°,PE⊥OB,∴∠CPE=30°,∴CE=CP=1,∴PE=,∴OP=2PE=2,∵PD⊥OA,點(diǎn)M是OP的中點(diǎn),∴DM=OP=.故選C.考點(diǎn):角平分線的性質(zhì);含30度角的直角三角形;直角三角形斜邊上的中線;勾股定理.4、B【解析】

首先證明△ABE≌△DCF,△ADG≌△CDG(SAS),△AGB≌△CGB,利用全等三角形的性質(zhì),等高模型、三邊關(guān)系一一判斷即可.【詳解】解:∵四邊形ABCD是正方形,∴AB=CD,∠BAD=∠ADC=90°,∠ADB=∠CDB=45°.∵在△ABE和△DCF中,AB=CD,∠BAD=∠ADC,AE=DF,∴△ABE≌△DCF,∴∠ABE=∠DCF.∵在△ADG和△CDG中,AD=CD,∠ADB=∠CDB,DG=DG,∴△ADG≌△CDG,∴∠DAG=∠DCF,∴∠ABE=∠DAG.∵∠DAG+∠BAH=90°,∴∠BAE+∠BAH=90°,∴∠AHB=90°,∴AG⊥BE,故③正確,同理可證:△AGB≌△CGB.∵DF∥CB,∴△CBG∽△FDG,∴△ABG∽△FDG,故①正確.∵S△HDG:S△HBG=DG:BG=DF:BC=DF:CD=tan∠FCD,∠DAG=∠FCD,∴S△HDG:S△HBG=tan∠FCD=tan∠DAG,故④正確.取AB的中點(diǎn)O,連接OD、OH.∵正方形的邊長為4,∴AO=OH=×4=1,由勾股定理得,OD=,由三角形的三邊關(guān)系得,O、D、H三點(diǎn)共線時,DH最小,DH最小=1-1.無法證明DH平分∠EHG,故②錯誤,故①③④⑤正確.故選B.【點(diǎn)睛】本題考查了相似三角形的判定與性質(zhì),全等三角形的判定與性質(zhì),正方形的性質(zhì),解直角三角形,解題的關(guān)鍵是掌握它們的性質(zhì)進(jìn)行解題.5、B【解析】

根據(jù)根的判別式的概念,求出△的正負(fù)即可解題.【詳解】解:A.x2-x-1=0,△=1+4=50,∴原方程有兩個不相等的實數(shù)根,B.,△=36-144=-1080,∴原方程沒有實數(shù)根,C.,,△=10,∴原方程有兩個不相等的實數(shù)根,D.,△=m2+80,∴原方程有兩個不相等的實數(shù)根,故選B.【點(diǎn)睛】本題考查了根的判別式,屬于簡單題,熟悉根的判別式的概念是解題關(guān)鍵.6、D【解析】

本題主要考查分式有意義的條件:分母不能為0,即3x?7≠0,解得x.【詳解】∵3x?7≠0,∴x≠.故選D.【點(diǎn)睛】本題考查的是分式有意義的條件:當(dāng)分母不為0時,分式有意義.7、C【解析】

根據(jù)三角形的面積公式以及切線長定理即可求出答案.【詳解】連接PE、PF、PG,AP,由題意可知:∠PEC=∠PFA=PGA=90°,∴S△PBC=BC?PE=×4×2=4,∴由切線長定理可知:S△PFC+S△PBG=S△PBC=4,∴S四邊形AFPG=S△ABC+S△PFC+S△PBG+S△PBC=5+4+4=13,∴由切線長定理可知:S△APG=S四邊形AFPG=,∴=×AG?PG,∴AG=,由切線長定理可知:CE=CF,BE=BG,∴△ABC的周長為AC+AB+CE+BE=AC+AB+CF+BG=AF+AG=2AG=13,故選C.【點(diǎn)睛】本題考查切線長定理,解題的關(guān)鍵是畫出輔助線,熟練運(yùn)用切線長定理,本題屬于中等題型.8、D【解析】

直接利用提取公因式法以及冪的乘方運(yùn)算法則將原式變形進(jìn)而得出答案.【詳解】解:∵55+55+55+55+55=25n,∴55×5=52n,則56=52n,解得:n=1.故選D.【點(diǎn)睛】此題主要考查了冪的乘方運(yùn)算,正確將原式變形是解題關(guān)鍵.9、B【解析】

根據(jù)一個角是90度的平行四邊形是矩形進(jìn)行選擇即可.【詳解】解:A、是鄰邊相等,可判定平行四邊形ABCD是菱形;

B、是一內(nèi)角等于90°,可判斷平行四邊形ABCD成為矩形;

C、是對角線互相垂直,可判定平行四邊形ABCD是菱形;

D、是對角線平分對角,可判斷平行四邊形ABCD成為菱形;故選:B.【點(diǎn)睛】本題主要應(yīng)用的知識點(diǎn)為:矩形的判定.①對角線相等且相互平分的四邊形為矩形.②一個角是90度的平行四邊形是矩形.10、C【解析】

由角平分線的定義得到∠CBE=∠ABE,再根據(jù)線段的垂直平分線的性質(zhì)得到EA=EB,則∠A=∠ABE,可得∠CBE=30°,根據(jù)含30度的直角三角形三邊的關(guān)系得到BE=2EC,即AE=2EC,由AE+EC=AC=9,即可求出AC.【詳解】解:∵BE平分∠ABC,∴∠CBE=∠ABE,∵ED垂直平分AB于D,∴EA=EB,∴∠A=∠ABE,∴∠CBE=30°,∴BE=2EC,即AE=2EC,而AE+EC=AC=9,∴AE=1.故選C.11、D【解析】

根據(jù)中位數(shù)的定義即可求出x的值,然后根據(jù)眾數(shù)的定義和平均數(shù)公式計算即可.【詳解】解:這11個數(shù)據(jù)的中位數(shù)是第8個數(shù)據(jù),且中位數(shù)為1,,則這11個數(shù)據(jù)為3、3、3、3、1、1、1、1、1、1、1、8、8、8、19,所以這組數(shù)據(jù)的眾數(shù)為1萬元,平均數(shù)為萬元.故選:.【點(diǎn)睛】此題考查的是中位數(shù)、眾數(shù)和平均數(shù),掌握中位數(shù)的定義、眾數(shù)的定義和平均數(shù)公式是解決此題的關(guān)鍵.12、B【解析】

根據(jù)軸對稱圖形的定義逐項識別即可,一個圖形的一部分,以某條直線為對稱軸,經(jīng)過軸對稱能與圖形的另一部分重合,這樣的圖形叫做軸對稱圖形.【詳解】A、是軸對稱圖形,故本選項錯誤;B、不是軸對稱圖形,故本選項正確;C、是軸對稱圖形,故本選項錯誤;D、是軸對稱圖形,故本選項錯誤.故選:B.【點(diǎn)睛】本題考查了軸對稱圖形的識別,熟練掌握軸對稱圖形的定義是解答本題的關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、丙【解析】

不低于四星,即四星與五星的和居多為符合題意的餐廳.【詳解】不低于四星,即比較四星和五星的和,丙最多.故答案是:丙.【點(diǎn)睛】考查了可能性的大小和統(tǒng)計表.解題的關(guān)鍵是將問題轉(zhuǎn)化為比較四星和五星的和的多少.14、1【解析】

根據(jù)算術(shù)平方根的定義進(jìn)行化簡,再根據(jù)算術(shù)平方根的定義求解即可.【詳解】解:∵12=21,

∴=1,

故答案為:1.【點(diǎn)睛】本題考查了算術(shù)平方根的定義,先把化簡是解題的關(guān)鍵.15、3a2b【解析】

利用取各分母系數(shù)的最小公倍數(shù)與字母因式的最高次冪的積作公分母求解即可.【詳解】分式與的最簡公分母是3a2b.故答案為3a2b.【點(diǎn)睛】本題考查最簡公分母,解題的關(guān)鍵是掌握求最簡公分母的方法.16、.【解析】試題分析:連結(jié)OC、OD,因為C、D是半圓O的三等分點(diǎn),所以,∠BOD=∠COD=60°,所以,三角形OCD為等邊三角形,所以,半圓O的半徑為OC=CD=2,S扇形OBDC=,S△OBC==,S弓形CD=S扇形ODC-S△ODC==,所以陰影部分的面積為為S=--()=.考點(diǎn):扇形的面積計算.17、2.4cm【解析】分析:根據(jù)圖2可判斷AC=3,BC=4,則可確定t=5時BP的值,利用sin∠B的值,可求出PD.詳解:由圖2可得,AC=3,BC=4,∴AB=.當(dāng)t=5時,如圖所示:,此時AC+CP=5,故BP=AC+BC-AC-CP=2,∵sin∠B==,∴PD=BP·sin∠B=2×==1.2(cm).故答案是:1.2cm.點(diǎn)睛:本題考查了動點(diǎn)問題的函數(shù)圖象,勾股定理,銳角三角函數(shù)等知識,解答本題的關(guān)鍵是根據(jù)圖形得到AC、BC的長度,此題難度一般.18、2【解析】分析:因為BP=,AB的長不變,當(dāng)PA最小時切線長PB最小,所以點(diǎn)P是過點(diǎn)A向直線l所作垂線的垂足,利用△APC≌△DOC求出AP的長即可求解.詳解:如圖,作AP⊥直線y=x+3,垂足為P,此時切線長PB最小,設(shè)直線與x軸,y軸分別交于D,C.∵A的坐標(biāo)為(1,0),∴D(0,3),C(﹣4,0),∴OD=3,AC=5,∴DC==5,∴AC=DC,在△APC與△DOC中,∠APC=∠COD=90°,∠ACP=∠DCO,AC=DC,∴△APC≌△DOC,∴AP=OD=3,∴PB==2.故答案為2.點(diǎn)睛:本題考查了切線的性質(zhì),全等三角形的判定性質(zhì),勾股定理及垂線段最短,因為直角三角形中的三邊長滿足勾股定理,所以當(dāng)其中的一邊的長不變時,即可根據(jù)另一邊的取值情況確定第三邊的最大值或最小值.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、甲、乙兩種節(jié)能燈分別購進(jìn)40、60只;商場獲利1300元.【解析】

(1)利用節(jié)能燈數(shù)量和所用的價錢建立方程組即可;(2)每種燈的數(shù)量乘以每只燈的利潤,最后求出之和即可.【詳解】(1)設(shè)商場購進(jìn)甲種節(jié)能燈x只,購進(jìn)乙種節(jié)能燈y只,根據(jù)題意,得,解這個方程組,得

,答:甲、乙兩種節(jié)能燈分別購進(jìn)40、60只.(2)商場獲利元,答:商場獲利1300元.【點(diǎn)睛】此題是二元一次方程組的應(yīng)用,主要考查了列方程組解應(yīng)用題的步驟和方法,利潤問題,解本題的關(guān)鍵是求出兩種節(jié)能燈的數(shù)量.20、(1)證明見解析;(2)BC=2CD,理由見解析.【解析】分析:(1)利用矩形的性質(zhì),即可判定△FAE≌△CDE,即可得到CD=FA,再根據(jù)CD∥AF,即可得出四邊形ACDF是平行四邊形;(2)先判定△CDE是等腰直角三角形,可得CD=DE,再根據(jù)E是AD的中點(diǎn),可得AD=2CD,依據(jù)AD=BC,即可得到BC=2CD.詳解:(1)∵四邊形ABCD是矩形,∴AB∥CD,∴∠FAE=∠CDE,∵E是AD的中點(diǎn),∴AE=DE,又∵∠FEA=∠CED,∴△FAE≌△CDE,∴CD=FA,又∵CD∥AF,∴四邊形ACDF是平行四邊形;(2)BC=2CD.證明:∵CF平分∠BCD,∴∠DCE=45°,∵∠CDE=90°,∴△CDE是等腰直角三角形,∴CD=DE,∵E是AD的中點(diǎn),∴AD=2CD,∵AD=BC,∴BC=2CD.點(diǎn)睛:本題主要考查了矩形的性質(zhì)以及平行四邊形的判定與性質(zhì),要證明兩直線平行和兩線段相等、兩角相等,可考慮將要證的直線、線段、角、分別置于一個四邊形的對邊或?qū)堑奈恢蒙?,通過證明四邊形是平行四邊形達(dá)到上述目的.21、(1)(2)(3)【解析】試題分析:(1)結(jié)合圖形可得矩形B的長可表示為:a+b,寬可表示為:a-b,繼而可表示出周長;(2)根據(jù)題意表示出整個矩形的長和寬,再求周長即可;(3)先表示出整個矩形的面積,然后代入計算即可.試題解析:(1)矩形B的長可表示為:a+b,寬可表示為:a-b,∴每個B區(qū)矩形場地的周長為:2(a+b+a-b)=4a;(2)整個矩形的長為a+a+b=2a+b,寬為:a+a-b=2a-b,∴整個矩形的周長為:2(2a+b+2a-b)=8a;(3)矩形的面積為:S=(2a+b)(2a-b)=,把,代入得,S=4×202-102=4×400-100=1500.點(diǎn)睛:本題考查了列代數(shù)式的知識,屬于基礎(chǔ)題,解答本題的關(guān)鍵是結(jié)合圖形表示出各矩形的長和寬.22、(Ⅰ),PA=4;(Ⅱ),【解析】

(Ⅰ)易得△OAC是等邊三角形即∠AOC=60°,又由PC是○O的切線故PC⊥OC,即∠OCP=90°可得∠P的度數(shù),由OC=4可得PA的長度(Ⅱ)由(Ⅰ)知△OAC是等邊三角形,易得∠APC=45°;過點(diǎn)C作CD⊥AB于點(diǎn)D,易得AD=AO=CO,在Rt△DOC中易得CD的長,即可求解【詳解】解:(Ⅰ)∵AB是○O的直徑,∴OA是○O的半徑.∵∠OAC=60°,OA=OC,∴△OAC是等邊三角形.∴∠AOC=60°.∵PC是○O的切線,OC為○O的半徑,∴PC⊥OC,即∠OCP=90°∴∠P=30°.∴PO=2CO=8.∴PA=PO-AO=PO-CO=4.(Ⅱ)由(Ⅰ)知△OAC是等邊三角形,∴∠AOC=∠ACO=∠OAC=60°∴∠AQC=30°.∵AQ=CQ,∴∠ACQ=∠QAC=75°∴∠ACQ-∠ACO=∠QAC-∠OAC=15°即∠QCO=∠QAO=15°.∴∠APC=∠AQC+∠QAO=45°.如圖②,過點(diǎn)C作CD⊥AB于點(diǎn)D.∵△OAC是等邊三角形,CD⊥AB于點(diǎn)D,∴∠DCO=30°,AD=AO=CO=2.∵∠APC=45°,∴∠DCQ=∠APC=45°∴PD=CD在Rt△DOC中,OC=4,∠DCO=30°,∴OD=2,∴CD=2∴PD=CD=2∴AP=AD+DP=2+2【點(diǎn)睛】此題主要考查圓的綜合應(yīng)用23、(1)4+;(2).【解析】

(1)根據(jù)冪的乘方、零指數(shù)冪、特殊角的三角函數(shù)值和絕對值可以解答本題;(3)根據(jù)分式的減法和除法可以解答本題.【詳解】(1)=4+1+|1﹣2×|=4+1+|1﹣|=4+1+﹣1=4+;(2)===.【點(diǎn)睛】本題考查分式的混合運(yùn)算、實數(shù)的運(yùn)算、零指數(shù)冪、特殊角的三角函數(shù)值和絕對值,解答本題的關(guān)鍵是明確它們各自的計算方法.24、(1);(2)P(,0);(3)E(,﹣1),在.【解析】

(1)將點(diǎn)A(,1)代入,利用待定系數(shù)法即可求出反比例函數(shù)的表達(dá)式;(2)先由射影定理求出BC=3,那么B(,﹣3),計算求出S△AOB=××4=.則S△AOP=S△AOB=.設(shè)點(diǎn)P的坐標(biāo)為(m,0),列出方程求解即可;(3)先解△OAB,得出∠ABO=30°,再根據(jù)旋轉(zhuǎn)的性質(zhì)求出E點(diǎn)坐標(biāo)為(﹣,﹣1),即可求解.【詳解】(1)∵點(diǎn)A(,1)在反比例函數(shù)的圖象上,∴k=×1=,∴反比例函數(shù)的表達(dá)式為;(2)∵A(,1),AB⊥x軸于點(diǎn)C,∴OC=,AC=1,由射影定理得=AC?BC,可得BC=3,B(,﹣3),S△AOB=××4=,∴S△AOP=S△AOB=.設(shè)點(diǎn)P的坐標(biāo)為(m,0),∴×|m|×1=,∴|m|=,∵P是x軸的負(fù)半軸上的點(diǎn),∴m=﹣,∴點(diǎn)P的坐標(biāo)為(,0);(3)點(diǎn)E在該反比例函數(shù)的圖象上,理由如下:∵OA⊥OB,OA=2,OB=,AB=4,∴sin∠ABO===,∴∠ABO=30°,∵將△BOA繞點(diǎn)B按逆時針方向旋轉(zhuǎn)60°得到△BDE,∴△BOA≌△BDE,∠OBD=60°,∴BO=BD=,OA

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論