2022屆江蘇省蘇州吳中學區(qū)重點名校畢業(yè)升學考試模擬卷數(shù)學卷含解析_第1頁
2022屆江蘇省蘇州吳中學區(qū)重點名校畢業(yè)升學考試模擬卷數(shù)學卷含解析_第2頁
2022屆江蘇省蘇州吳中學區(qū)重點名校畢業(yè)升學考試模擬卷數(shù)學卷含解析_第3頁
2022屆江蘇省蘇州吳中學區(qū)重點名校畢業(yè)升學考試模擬卷數(shù)學卷含解析_第4頁
2022屆江蘇省蘇州吳中學區(qū)重點名校畢業(yè)升學考試模擬卷數(shù)學卷含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2021-2022中考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.方程的解是().A. B. C. D.2.下列運算結果為正數(shù)的是()A.1+(–2) B.1–(–2) C.1×(–2) D.1÷(–2)3.下列實數(shù)中,無理數(shù)是()A.3.14 B.1.01001 C. D.4.如圖,在正方形ABCD中,點E,F(xiàn)分別在BC,CD上,AE=AF,AC與EF相交于點G,下列結論:①AC垂直平分EF;②BE+DF=EF;③當∠DAF=15°時,△AEF為等邊三角形;④當∠EAF=60°時,S△ABE=S△CEF,其中正確的是()A.①③ B.②④ C.①③④ D.②③④5.北京故宮的占地面積達到720000平方米,這個數(shù)據(jù)用科學記數(shù)法表示為()A.0.72×106平方米 B.7.2×106平方米C.72×104平方米 D.7.2×105平方米6.如圖,等腰△ABC中,AB=AC=10,BC=6,直線MN垂直平分AB交AC于D,連接BD,則△BCD的周長等于()A.13 B.14 C.15 D.167.如圖,兩個反比例函數(shù)y1=(其中k1>0)和y2=在第一象限內(nèi)的圖象依次是C1和C2,點P在C1上.矩形PCOD交C2于A、B兩點,OA的延長線交C1于點E,EF⊥x軸于F點,且圖中四邊形BOAP的面積為6,則EF:AC為()A.:1 B.2: C.2:1 D.29:148.2017年底我國高速公路已開通里程數(shù)達13.5萬公里,居世界第一,將數(shù)據(jù)135000用科學計數(shù)法表示正確的是()A.1.35×106 B.1.35×105 C.13.5×104 D.135×1039.若正六邊形的半徑長為4,則它的邊長等于()A.4 B.2 C. D.10.下列關于事件發(fā)生可能性的表述,正確的是()A.事件:“在地面,向上拋石子后落在地上”,該事件是隨機事件B.體育彩票的中獎率為10%,則買100張彩票必有10張中獎C.在同批次10000件產(chǎn)品中抽取100件發(fā)現(xiàn)有5件次品,則這批產(chǎn)品中大約有500件左右的次品D.擲兩枚硬幣,朝上的一面是一正面一反面的概率為二、填空題(本大題共6個小題,每小題3分,共18分)11.若a:b=1:3,b:c=2:5,則a:c=_____.12.一個多邊形的內(nèi)角和比它的外角和的3倍少180°,則這個多邊形的邊數(shù)是______.13.如圖,在矩形ABCD中,E是AD上一點,把△ABE沿直線BE翻折,點A正好落在BC邊上的點F處,如果四邊形CDEF和矩形ABCD相似,那么四邊形CDEF和矩形ABCD面積比是__.14.圓錐的底面半徑是4cm,母線長是5cm,則圓錐的側面積等于_____cm1.15.如圖,直線m∥n,以直線m上的點A為圓心,適當長為半徑畫弧,分別交直線m,n于點B、C,連接AC、BC,若∠1=30°,則∠2=_____.16.中國人最先使用負數(shù),魏晉時期的數(shù)學家劉徽在“正負術”的注文中指出,可將算籌(小棍形狀的記數(shù)工具)正放表示正數(shù),斜放表示負數(shù).如圖,根據(jù)劉徽的這種表示法,觀察圖①,可推算圖②中所得的數(shù)值為_____.三、解答題(共8題,共72分)17.(8分)如圖,在平行四邊形ABCD中,BD為對角線,AE⊥BD,CF⊥BD,垂足分別為E、F,連接AF、CE,求證:AF=CE.18.(8分)“食品安全”受到全社會的廣泛關注,濟南市某中學對部分學生就食品安全知識的了解程度,采用隨機抽樣調查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:(1)接受問卷調查的學生共有人,扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角為;(2)請補全條形統(tǒng)計圖;(3)若該中學共有學生900人,請根據(jù)上述調查結果,估計該中學學生中對食品安全知識達到“了解”和“基本了解”程度的總人數(shù);(4)若從對食品安全知識達到“了解”程度的2個女生和2個男生中隨機抽取2人參加食品安全知識競賽,請用樹狀圖或列表法求出恰好抽到1個男生和1個女生的概率.19.(8分)某中學為開拓學生視野,開展“課外讀書周”活動,活動后期隨機調查了九年級部分學生一周的課外閱讀時間,并將結果繪制成兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖的信息回答下列問題:(1)本次調查的學生總數(shù)為_____人,被調查學生的課外閱讀時間的中位數(shù)是_____小時,眾數(shù)是_____小時;并補全條形統(tǒng)計圖;(2)在扇形統(tǒng)計圖中,課外閱讀時間為5小時的扇形的圓心角度數(shù)是_____;(3)若全校九年級共有學生800人,估計九年級一周課外閱讀時間為6小時的學生有多少人?20.(8分)如圖,△ABD是⊙O的內(nèi)接三角形,E是弦BD的中點,點C是⊙O外一點且∠DBC=∠A,連接OE延長與圓相交于點F,與BC相交于點C.求證:BC是⊙O的切線;若⊙O的半徑為6,BC=8,求弦BD的長.21.(8分)先化簡,再求值.(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣.22.(10分)如圖,在△ABC中,∠BAC=90°,AD⊥BC于點D,BF平分∠ABC交AD于點E,交AC于點F,求證:AE=AF.23.(12分)如圖,二次函數(shù)的圖象與x軸交于A、B兩點,與y軸交于點C,已知點A(﹣4,0).求拋物線與直線AC的函數(shù)解析式;若點D(m,n)是拋物線在第二象限的部分上的一動點,四邊形OCDA的面積為S,求S關于m的函數(shù)關系式;若點E為拋物線上任意一點,點F為x軸上任意一點,當以A、C、E、F為頂點的四邊形是平行四邊形時,請求出滿足條件的所有點E的坐標.24.已知:如圖,∠ABC=∠DCB,BD、CA分別是∠ABC、∠DCB的平分線.求證:AB=DC.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

直接解分式方程,注意要驗根.【詳解】解:=0,方程兩邊同時乘以最簡公分母x(x+1),得:3(x+1)-7x=0,解這個一元一次方程,得:x=,經(jīng)檢驗,x=是原方程的解.故選B.【點睛】本題考查了解分式方程,解分式方程不要忘記驗根.2、B【解析】

分別根據(jù)有理數(shù)的加、減、乘、除運算法則計算可得.【詳解】解:A、1+(﹣2)=﹣(2﹣1)=﹣1,結果為負數(shù);B、1﹣(﹣2)=1+2=3,結果為正數(shù);C、1×(﹣2)=﹣1×2=﹣2,結果為負數(shù);D、1÷(﹣2)=﹣1÷2=﹣,結果為負數(shù);故選B.【點睛】本題主要考查有理數(shù)的混合運算,熟練掌握有理數(shù)的四則運算法則是解題的關鍵.3、C【解析】

先把能化簡的數(shù)化簡,然后根據(jù)無理數(shù)的定義逐一判斷即可得.【詳解】A、3.14是有理數(shù);B、1.01001是有理數(shù);C、是無理數(shù);D、是分數(shù),為有理數(shù);故選C.【點睛】本題主要考查無理數(shù)的定義,屬于簡單題.4、C【解析】

①通過條件可以得出△ABE≌△ADF,從而得出∠BAE=∠DAF,BE=DF,由正方形的性質就可以得出EC=FC,就可以得出AC垂直平分EF,②設BC=a,CE=y,由勾股定理就可以得出EF與x、y的關系,表示出BE與EF,即可判斷BE+DF與EF關系不確定;③當∠DAF=15°時,可計算出∠EAF=60°,即可判斷△EAF為等邊三角形,④當∠EAF=60°時,設EC=x,BE=y,由勾股定理就可以得出x與y的關系,表示出BE與EF,利用三角形的面積公式分別表示出S△CEF和S△ABE,再通過比較大小就可以得出結論.【詳解】①四邊形ABCD是正方形,∴AB═AD,∠B=∠D=90°.在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF∵BC=CD,∴BC-BE=CD-DF,即CE=CF,∵AE=AF,∴AC垂直平分EF.(故①正確).②設BC=a,CE=y,∴BE+DF=2(a-y)EF=y,∴BE+DF與EF關系不確定,只有當y=(2?)a時成立,(故②錯誤).③當∠DAF=15°時,∵Rt△ABE≌Rt△ADF,∴∠DAF=∠BAE=15°,∴∠EAF=90°-2×15°=60°,又∵AE=AF∴△AEF為等邊三角形.(故③正確).④當∠EAF=60°時,設EC=x,BE=y,由勾股定理就可以得出:(x+y)2+y2=(x)2∴x2=2y(x+y)∵S△CEF=x2,S△ABE=y(x+y),∴S△ABE=S△CEF.(故④正確).綜上所述,正確的有①③④,故選C.【點睛】本題考查了正方形的性質的運用,全等三角形的判定及性質的運用,勾股定理的運用,等邊三角形的性質的運用,三角形的面積公式的運用,解答本題時運用勾股定理的性質解題時關鍵.5、D【解析】試題分析:把一個數(shù)記成a×10n(1≤a<10,n整數(shù)位數(shù)少1)的形式,叫做科學記數(shù)法.∴此題可記為1.2×105平方米.考點:科學記數(shù)法6、D【解析】

由AB的垂直平分MN交AC于D,根據(jù)線段垂直平分線的性質,即可求得AD=BD,又由△CDB的周長為:BC+CD+BD=BC+CD+AD=BC+AC,即可求得答案.【詳解】解:∵MN是線段AB的垂直平分線,∴AD=BD,∵AB=AC=10,∴BD+CD=AD+CD=AC=10,∴△BCD的周長=AC+BC=10+6=16,故選D.【點睛】此題考查了線段垂直平分線的性質,比較簡單,注意數(shù)形結合思想與轉化思想的應用.7、A【解析】試題分析:首先根據(jù)反比例函數(shù)y2=的解析式可得到=×3=,再由陰影部分面積為6可得到=9,從而得到圖象C1的函數(shù)關系式為y=,再算出△EOF的面積,可以得到△AOC與△EOF的面積比,然后證明△EOF∽△AOC,根據(jù)對應邊之比等于面積比的平方可得到EF﹕AC=.故選A.考點:反比例函數(shù)系數(shù)k的幾何意義8、B【解析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】解:135000=1.35×105故選B.【點睛】此題考查科學記數(shù)法表示較大的數(shù).科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.9、A【解析】試題分析:正六邊形的中心角為360°÷6=60°,那么外接圓的半徑和正六邊形的邊長將組成一個等邊三角形,故正六邊形的半徑等于1,則正六邊形的邊長是1.故選A.考點:正多邊形和圓.10、C【解析】

根據(jù)隨機事件,必然事件的定義以及概率的意義對各個小題進行判斷即可.【詳解】解:A.事件:“在地面,向上拋石子后落在地上”,該事件是必然事件,故錯誤.B.體育彩票的中獎率為10%,則買100張彩票可能有10張中獎,故錯誤.C.在同批次10000件產(chǎn)品中抽取100件發(fā)現(xiàn)有5件次品,則這批產(chǎn)品中大約有500件左右的次品,正確.D.擲兩枚硬幣,朝上的一面是一正面一反面的概率為,故錯誤.故選:C.【點睛】考查必然事件,隨機事件的定義以及概率的意義,概率=所求情況數(shù)與總情況數(shù)之比.二、填空題(本大題共6個小題,每小題3分,共18分)11、2∶1【解析】分析:已知a、b兩數(shù)的比為1:3,根據(jù)比的基本性質,a、b兩數(shù)的比1:3=(1×2):(3×2)=2:6;而b、c的比為:2:5=(2×3):(5×3)=6:1;,所以a、c兩數(shù)的比為2:1.詳解:a:b=1:3=(1×2):(3×2)=2:6;

b:c=2:5=(2×3):(5×3)=6:1;,

所以a:c=2:1;

故答案為2:1.點睛:本題主要考查比的基本性質的實際應用,如果已知甲乙、乙丙兩數(shù)的比,那么可以根據(jù)比的基本性質求出任意兩數(shù)的比.12、7【解析】根據(jù)多邊形內(nèi)角和公式得:(n-2).得:13、【解析】由題意易得四邊形ABFE是正方形,設AB=1,CF=x,則有BC=x+1,CD=1,∵四邊形CDEF和矩形ABCD相似,∴CD:BC=FC:CD,即1:(x+1)=x:1,∴x=或x=(舍去),∴=,故答案為.【點睛】本題考查了折疊的性質,相似多邊形的性質等,熟練掌握相似多邊形的面積比等于相似比的平方是解題的關鍵.14、10π【解析】

解:根據(jù)圓錐的側面積公式可得這個圓錐的側面積=?1π?4?5=10π(cm1).故答案為:10π【點睛】本題考查圓錐的計算.15、75°【解析】試題解析:∵直線l1∥l2,∴故答案為16、【解析】試題分析:根據(jù)有理數(shù)的加法,可得圖②中表示(+2)+(﹣5)=﹣1,故答案為﹣1.考點:正數(shù)和負數(shù)三、解答題(共8題,共72分)17、見解析【解析】

易證△ABE≌△CDF,得AE=CF,即可證得△AEF≌△CFE,即可得證.【詳解】在平行四邊形ABCD中,AB∥CD,AB=CD∴∠ABE=∠CDF,又AE⊥BD,CF⊥BD∴△ABE≌△CDF(AAS),∴AE=CF又∠AEF=∠CFE,EF=FE,∴△AEF≌△CFE(SAS)∴AF=CE.【點睛】此題主要考查平行四邊形的性質與全等三角形的判定與性質,解題的關鍵是熟知平行四邊形的性質定理.18、(1)60,90°;(2)補圖見解析;(3)300;(4).【解析】分析:(1)根據(jù)了解很少的人數(shù)除以了解很少的人數(shù)所占的百分百求出抽查的總人數(shù),再用“基本了解”所占的百分比乘以360°,即可求出“基本了解”部分所對應扇形的圓心角的度數(shù);(2)用調查的總人數(shù)減去“基本了解”“了解很少”和“基本了解”的人數(shù),求出了解的人數(shù),從而補全統(tǒng)計圖;(3)用總人數(shù)乘以“了解”和“基本了解”程度的人數(shù)所占的比例,即可求出達到“了解”和“基本了解”程度的總人數(shù);(4)根據(jù)題意列出表格,再根據(jù)概率公式即可得出答案.詳解:(1)60;90°.(2)補全的條形統(tǒng)計圖如圖所示.(3)對食品安全知識達到“了解”和“基本了解”的學生所占比例為,由樣本估計總體,該中學學生中對食品安全知識達到“了解”和“基本了解”程度的總人數(shù)為.(4)列表法如表所示,男生男生女生女生男生男生男生男生女生男生女生男生男生男生男生女生男生女生女生男生女生男生女生女生女生女生男生女生男生女生女生女生所有等可能的情況一共12種,其中選中1個男生和1個女生的情況有8種,所以恰好選中1個男生和1個女生的概率是.點睛:本題考查了條形統(tǒng)計圖、扇形統(tǒng)計圖以及用列表法或樹狀圖法求概率,根據(jù)題意求出總人數(shù)是解題的關鍵;注意運用概率公式:概率=所求情況數(shù)與總情況數(shù)之比.19、(1)50;4;5;畫圖見解析;(2)144°;(3)64【解析】

(1)根據(jù)統(tǒng)計圖可知,課外閱讀達3小時的共10人,占總人數(shù)的20%,由此可得出總人數(shù);求出課外閱讀時間4小時與6小時男生的人數(shù),再根據(jù)中位數(shù)與眾數(shù)的定義即可得出結論;根據(jù)求出的人數(shù)補全條形統(tǒng)計圖即可;

(2)求出課外閱讀時間為5小時的人數(shù),再求出其人數(shù)與總人數(shù)的比值即可得出扇形的圓心角度數(shù);

(3)求出總人數(shù)與課外閱讀時間為6小時的學生人數(shù)的百分比的積即可.【詳解】解:(1)∵課外閱讀達3小時的共10人,占總人數(shù)的20%,∴=50(人).∵課外閱讀4小時的人數(shù)是32%,∴50×32%=16(人),∴男生人數(shù)=16﹣8=8(人);∴課外閱讀6小時的人數(shù)=50﹣6﹣4﹣8﹣8﹣8﹣12﹣3=1(人),∴課外閱讀3小時的是10人,4小時的是16人,5小時的是20人,6小時的是4人,∴中位數(shù)是4小時,眾數(shù)是5小時.補全圖形如圖所示.故答案為50,4,5;(2)∵課外閱讀5小時的人數(shù)是20人,∴×360°=144°.故答案為144°;(3)∵課外閱讀6小時的人數(shù)是4人,∴800×=64(人).答:九年級一周課外閱讀時間為6小時的學生大約有64人.【點睛】本題考查了統(tǒng)計圖與中位數(shù)、眾數(shù)的知識點,解題的關鍵是熟練的掌握中位數(shù)與眾數(shù)的定義與根據(jù)題意作圖.20、(1)詳見解析;(2)BD=9.6.【解析】試題分析:(1)連接OB,由垂徑定理可得BE=DE,OE⊥BD,,再由圓周角定理可得,從而得到∠OBE+∠DBC=90°,即,命題得證.(2)由勾股定理求出OC,再由△OBC的面積求出BE,即可得出弦BD的長.試題解析:(1)證明:如下圖所示,連接OB.∵E是弦BD的中點,∴BE=DE,OE⊥BD,,∴∠BOE=∠A,∠OBE+∠BOE=90°.∵∠DBC=∠A,∴∠BOE=∠DBC,∴∠OBE+∠DBC=90°,∴∠OBC=90°,即BC⊥OB,∴BC是⊙O的切線.(2)解:∵OB=6,BC=8,BC⊥OB,∴,∵,∴,∴.點睛:本題主要考查圓中的計算問題,解題的關鍵在于清楚角度的轉換方式和弦長的計算方法.21、解:原式=4x2﹣9﹣4x2+4x+x2﹣4x+4=x2﹣1.當x=﹣時,原式=(﹣)2﹣1=3﹣1=﹣2.【解析】應用整式的混合運算法則進行化簡,最后代入x值求值.22、見解析【解析】

根據(jù)角平分線的定義可得∠ABF=∠CBF,由已知條件可得∠ABF+∠AFB=∠CBF+∠BED=90°,根據(jù)余角的性質可得∠AFB=∠BED,即可求得∠AFE=∠AEF,由等腰三角形的判定即可證得結論.【詳解】∵BF平分∠ABC,∴∠ABF=∠CBF,∵∠BAC=90°,AD⊥BC,∴∠ABF+∠AFB=∠CBF+∠BED=90°,∴∠AFB=∠BED,∵∠AEF=∠BED,∴∠AFE=∠AEF,∴AE=AF.【點睛】本題考查了等腰三角形的判定、直角三角形的性質,根據(jù)余角的性質證得∠AFB=∠BED是解題的關鍵.23、(1)(1)S=﹣m1﹣4m+4(﹣4<m<0)(3)(﹣3,1)、(,﹣1)、(,﹣1)【解析】

(1)把點A的坐標代入拋物線的解析式,就可求得拋物線的解析式,根據(jù)A,C兩點的坐標,可求得直線AC的函數(shù)解析式;(1)先

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論