廣東省廣州市石井新市學片2021-2022學年中考聯考數學試題含解析_第1頁
廣東省廣州市石井新市學片2021-2022學年中考聯考數學試題含解析_第2頁
廣東省廣州市石井新市學片2021-2022學年中考聯考數學試題含解析_第3頁
廣東省廣州市石井新市學片2021-2022學年中考聯考數學試題含解析_第4頁
廣東省廣州市石井新市學片2021-2022學年中考聯考數學試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022中考數學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,這是根據某班40名同學一周的體育鍛煉情況繪制的條形統(tǒng)計圖,根據統(tǒng)計圖提供的信息,可得到該班40名同學一周參加體育鍛煉時間的眾數、中位數分別是()A.8,9 B.8,8.5 C.16,8.5 D.16,10.52.如圖,在等腰直角△ABC中,∠C=90°,D為BC的中點,將△ABC折疊,使點A與點D重合,EF為折痕,則sin∠BED的值是()A. B. C. D.3.如圖1、2、3分別表示甲、乙、丙三人由A地到B地的路線圖,已知甲的路線為:A→C→B;乙的路線為:A→D→E→F→B,其中E為AB的中點;丙的路線為:A→I→J→K→B,其中J在AB上,且AJ>JB.若符號[→]表示[直線前進],則根據圖1、圖2、圖3的數據,判斷三人行進路線長度的大小關系為()A.甲=乙=丙 B.甲<乙<丙 C.乙<丙<甲 D.丙<乙<甲4.計算36÷(﹣6)的結果等于()A.﹣6 B.﹣9 C.﹣30 D.65.4的平方根是()A.16 B.2 C.±2 D.±6.2017年底我國高速公路已開通里程數達13.5萬公里,居世界第一,將數據135000用科學計數法表示正確的是()A.1.35×106 B.1.35×105 C.13.5×104 D.135×1037.對于反比例函數y=﹣2xA.圖象分布在第二、四象限B.當x>0時,y隨x的增大而增大C.圖象經過點(1,﹣2)D.若點A(x1,y1),B(x2,y2)都在圖象上,且x1<x2,則y1<y28.一個兩位數,它的十位數字是3,個位數字是拋擲一枚質地均勻的骰子(六個面分別標有數字1﹣6)朝上一面的數字,任意拋擲這枚骰子一次,得到的兩位數是3的倍數的概率等于()A. B. C. D.9.如圖,小巷左右兩側是豎直的墻,一架梯子斜靠在左墻時,梯子底端到左墻角的距離為0.7米,頂端距離地面2.4米,如果保持梯子底端位置不動,將梯子斜靠在右墻時,頂端距離地面2米,那么小巷的寬度為()A.0.7米 B.1.5米 C.2.2米 D.2.4米10.下列圖標中,是中心對稱圖形的是()A. B.C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在△ABC中,DE∥BC,,則=_____.12.因式分解:2m2﹣8n2=.13.已知線段厘米,厘米,線段c是線段a和線段b的比例中項,線段c的長度等于________厘米.14.分解因式:4x2﹣36=___________.15.在計算器上,按照下面如圖的程序進行操作:如表中的x與y分別是輸入的6個數及相應的計算結果:上面操作程序中所按的第三個鍵和第四個鍵分別是_____、_____.x﹣3﹣2﹣1012y﹣5﹣3﹣113516.如圖,直線y=x+2與反比例函數y=的圖象在第一象限交于點P.若OP=,則k的值為________.三、解答題(共8題,共72分)17.(8分)已知:如圖,梯形ABCD,DC∥AB,對角線AC平分∠BCD,點E在邊CB的延長線上,EA⊥AC,垂足為點A.(1)求證:B是EC的中點;(2)分別延長CD、EA相交于點F,若AC2=DC?EC,求證:AD:AF=AC:FC.18.(8分)已知:如圖,∠ABC=∠DCB,BD、CA分別是∠ABC、∠DCB的平分線.求證:AB=DC.19.(8分)如圖,在矩形ABCD中,AD=4,點E在邊AD上,連接CE,以CE為邊向右上方作正方形CEFG,作FH⊥AD,垂足為H,連接AF.(1)求證:FH=ED;(2)當AE為何值時,△AEF的面積最大?20.(8分)在平面直角坐標系中,已知拋物線經過A(-3,0),B(0,-3),C(1,0)三點.(1)求拋物線的解析式;(2)若點M為第三象限內拋物線上一動點,點M的橫坐標為m,△AMB的面積為S.求S關于m的函數關系式,并求出S的最大值;(3)若點P是拋物線上的動點,點Q是直線y=-x上的動點,判斷有幾個位置能夠使得點P、Q、B、O為頂點的四邊形為平行四邊形,直接寫出相應的點Q的坐標.21.(8分)如圖1,在正方形ABCD中,E是AB上一點,F是AD延長線上一點,且DF=BE,求證:CE=CF;如圖2,在正方形ABCD中,E是AB上一點,G是AD上一點,如果∠GCE=45°,請你利用(1)的結論證明:GE=BE+GD;運用(1)(2)解答中所積累的經驗和知識,完成下題:如圖3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一點,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面積.22.(10分)(定義)如圖1,A,B為直線l同側的兩點,過點A作直線1的對稱點A′,連接A′B交直線l于點P,連接AP,則稱點P為點A,B關于直線l的“等角點”.(運用)如圖2,在平面直坐標系xOy中,已知A(2,3),B(﹣2,﹣3)兩點.(1)C(4,32),D(4,22),E(4,12(2)若直線l垂直于x軸,點P(m,n)是點A,B關于直線l的等角點,其中m>2,∠APB=α,求證:tanα2=n(3)若點P是點A,B關于直線y=ax+b(a≠0)的等角點,且點P位于直線AB的右下方,當∠APB=60°時,求b的取值范圍(直接寫出結果).23.(12分)解方程:1+24.觀察下列各式:①②③由此歸納出一般規(guī)律__________.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】

根據中位數、眾數的概念分別求得這組數據的中位數、眾數.【詳解】解:眾數是一組數據中出現次數最多的數,即8;而將這組數據從小到大的順序排列后,處于20,21兩個數的平均數,由中位數的定義可知,這組數據的中位數是9.故選A.【點睛】考查了中位數、眾數的概念.本題為統(tǒng)計題,考查眾數與中位數的意義,中位數是將一組數據從小到大(或從大到小)重新排列后,最中間的那個數(最中間兩個數的平均數),叫做這組數據的中位數,如果中位數的概念掌握得不好,不把數據按要求重新排列,就會錯誤地將這組數據最中間的那個數當作中位數.2、B【解析】

先根據翻折變換的性質得到△DEF≌△AEF,再根據等腰三角形的性質及三角形外角的性質可得到∠BED=CDF,設CD=1,CF=x,則CA=CB=2,再根據勾股定理即可求解.【詳解】∵△DEF是△AEF翻折而成,∴△DEF≌△AEF,∠A=∠EDF,∵△ABC是等腰直角三角形,∴∠EDF=45°,由三角形外角性質得∠CDF+45°=∠BED+45°,∴∠BED=∠CDF,設CD=1,CF=x,則CA=CB=2,∴DF=FA=2-x,∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,解得:x=,∴sin∠BED=sin∠CDF=.故選B.【點睛】本題考查的是圖形翻折變換的性質、等腰直角三角形的性質、勾股定理、三角形外角的性質,涉及面較廣,但難易適中.3、A【解析】分析:由角的度數可以知道2、3中的兩個三角形的對應邊都是平行的,所以圖2,圖3中的三角形都和圖1中的三角形相似.而且圖2三角形全等,圖3三角形相似.詳解:根據以上分析:所以圖2可得AE=BE,AD=EF,DE=BE.∵AE=BE=AB,∴AD=EF=AC,DE=BE=BC,∴甲=乙.圖3與圖1中,三個三角形相似,所以====.∵AJ+BJ=AB,∴AI+JK=AC,IJ+BK=BC,∴甲=丙.∴甲=乙=丙.故選A.點睛:本題考查了的知識點是平行四邊形的性質,解答本題的關鍵是利用相似三角形的平移,求得線段的關系.4、A【解析】分析:根據有理數的除法法則計算可得.詳解:31÷(﹣1)=﹣(31÷1)=﹣1.故選A.點睛:本題主要考查了有理數的除法,解題的關鍵是掌握有理數的除法法則:兩數相除,同號得正,異號得負,并把絕對值相除.2除以任何一個不等于2的數,都得2.5、C【解析】試題解析:∵(±2)2=4,∴4的平方根是±2,故選C.考點:平方根.6、B【解析】

科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】解:135000=1.35×105故選B.【點睛】此題考查科學記數法表示較大的數.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.7、D【解析】

根據反比例函數圖象的性質對各選項分析判斷后利用排除法求解.【詳解】A.k=?2<0,∴它的圖象在第二、四象限,故本選項正確;B.k=?2<0,當x>0時,y隨x的增大而增大,故本選項正確;C.∵-2D.若點A(x1,y1),B(x2,y2)都在圖象上,,若x1<0<x2,則y2<y1,故本選項錯誤.故選:D.【點睛】考查了反比例函數的圖象與性質,掌握反比例函數的性質是解題的關鍵.8、B【解析】

直接得出兩位數是3的倍數的個數,再利用概率公式求出答案.【詳解】∵一枚質地均勻的骰子,其六個面上分別標有數字1,2,3,4,5,6,投擲一次,十位數為3,則兩位數是3的倍數的個數為2.∴得到的兩位數是3的倍數的概率為:=.故答案選:B.【點睛】本題考查了概率的知識點,解題的關鍵是根據題意找出兩位數是3的倍數的個數再運用概率公式解答即可.9、C【解析】

在直角三角形中利用勾股定理計算出直角邊,即可求出小巷寬度.【詳解】在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故選C.【點睛】本題考查勾股定理的運用,利用梯子長度不變找到斜邊是關鍵.10、B【解析】

根據中心對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A、不是中心對稱圖形,故本選項錯誤;B、是中心對稱圖形,故本選項正確;C、不是中心對稱圖形,故本選項錯誤;D、不是中心對稱圖形,故本選項錯誤.故選B.【點睛】本題考查了中心對稱圖形的概念:中心對稱圖形是要尋找對稱中心,旋轉180度后與原圖重合.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】

先利用平行條件證明三角形的相似,再利用相似三角形面積比等于相似比的平方,即可解題.【詳解】解:∵DE∥BC,,∴,由平行條件易證△ADE△ABC,∴S△ADE:S△ABC=1:9,∴=.【點睛】本題考查了相似三角形的判定和性質,中等難度,熟記相似三角形的面積比等于相似比的平方是解題關鍵.12、2(m+2n)(m﹣2n).【解析】試題分析:根據因式分解法的步驟,有公因式的首先提取公因式,可知首先提取系數的最大公約數2,進一步發(fā)現提公因式后,可以用平方差公式繼續(xù)分解.解:2m2﹣8n2,=2(m2﹣4n2),=2(m+2n)(m﹣2n).考點:提公因式法與公式法的綜合運用.13、1【解析】

根據比例中項的定義,列出比例式即可得出中項,注意線段不能為負.【詳解】∵線段c是線段a和線段b的比例中項,∴,解得(線段是正數,負值舍去),∴,故答案為:1.【點睛】本題考查比例線段、比例中項等知識,比例中項的平方等于兩條線段的乘積,熟練掌握基本概念是解題關鍵.14、4(x+3)(x﹣3)【解析】分析:首先提取公因式4,然后再利用平方差公式進行因式分解.詳解:原式=.點睛:本題主要考查的是因式分解,屬于基礎題型.因式分解的方法有提取公因式、公式法和十字相乘法等,如果有公因式首先都要提取公因式.15、+,1【解析】

根據表格中數據求出x、y之間的關系,即可得出答案.【詳解】解:根據表格中數據分析可得:x、y之間的關系為:y=2x+1,則按的第三個鍵和第四個鍵應是“+”“1”.故答案為+,1.【點睛】此題考查了有理數的運算,要求同學們能熟練應用計算器,會用科學記算器進行計算.16、1【解析】設點P(m,m+2),∵OP=,∴=,解得m1=1,m2=﹣1(不合題意舍去),∴點P(1,1),∴1=,解得k=1.點睛:本題考查了反比例函數與一次函數的交點坐標,仔細審題,能夠求得點P的坐標是解題的關鍵.三、解答題(共8題,共72分)17、(1)詳見解析;(2)詳見解析.【解析】

(1)根據平行線的性質結合角平分線的性質可得出∠BCA=∠BAC,進而可得出BA=BC,根據等角的余角相等結合等角對等邊,即可得出AB=BE,進而可得出BE=BA=BC,此題得證;(2)根據AC2=DC?EC結合∠ACD=∠ECA可得出△ACD∽△ECA,根據相似三角形的性質可得出∠ADC=∠EAC=90°,進而可得出∠FDA=∠FAC=90°,結合∠AFD=∠CFA可得出△AFD∽△CFA,再利用相似三角形的性質可證出AD:AF=AC:FC.【詳解】(1)∵DC∥AB,∴∠DCA=∠BAC.∵AC平分∠BCD,∴∠BCA=∠BAC=∠DCA,∴BA=BC.∵∠BAC+∠BAE=90°,∠ACB+∠E=90°,∴∠BAE=∠E,∴AB=BE,∴BE=BA=BC,∴B是EC的中點;(2)∵AC2=DC?EC,∴.∵∠ACD=∠ECA,∴△ACD∽△ECA,∴∠ADC=∠EAC=90°,∴∠FDA=∠FAC=90°.又∵∠AFD=∠CFA,∴△AFD∽△CFA,∴AD:AF=AC:FC.【點睛】本題考查了相似三角形的判定與性質、角平分線的性質以及等腰三角形的性質,解題的關鍵是:(1)利用等角對等邊找出BA=BC、BE=BA;(2)利用相似三角形的判定定理找出△AFD∽△CFA.18、∵平分平分,∴在與中,.【解析】分析:根據角平分線性質和已知求出∠ACB=∠DBC,根據ASA推出△ABC≌△DCB,根據全等三角形的性質推出即可.解答:證明:∵AC平分∠BCD,BC平分∠ABC,∴∠DBC=∠ABC,∠ACB=∠DCB,∵∠ABC=∠DCB,∴∠ACB=∠DBC,∵在△ABC與△DCB中,,∴△ABC≌△DCB,∴AB=DC.19、(1)證明見解析;(2)AE=2時,△AEF的面積最大.【解析】

(1)根據正方形的性質,可得EF=CE,再根據∠CEF=∠90°,進而可得∠FEH=∠DCE,結合已知條件∠FHE=∠D=90°,利用“AAS”即可證明△FEH≌△ECD,由全等三角形的性質可得FH=ED;(2)設AE=a,用含a的函數表示△AEF的面積,再利用函數的最值求面積最大值即可.【詳解】(1)證明:∵四邊形CEFG是正方形,∴CE=EF.∵∠FEC=∠FEH+∠CED=90°,∠DCE+∠CED=90°,∴∠FEH=∠DCE.在△FEH和△ECD中,EF=CE∠F∴△FEH≌△ECD,∴FH=ED.(2)解:設AE=a,則ED=FH=4-a,∴S△AEF=12AE·FH=12a(4-a)=-12∴當AE=2時,△AEF的面積最大.【點睛】本題考查了正方形性質、矩形性質以及全等三角形的判斷和性質和三角形面積有關的知識點,熟記全等三角形的各種判斷方法是解題的關鍵.20、(1)時,S最大為(1)(-1,1)或或或(1,-1)【解析】試題分析:(1)先假設出函數解析式,利用三點法求解函數解析式.(2)設出M點的坐標,利用S=S△AOM+S△OBM﹣S△AOB即可進行解答;(1)當OB是平行四邊形的邊時,表示出PQ的長,再根據平行四邊形的對邊相等列出方程求解即可;當OB是對角線時,由圖可知點A與P應該重合,即可得出結論.試題解析:解:(1)設此拋物線的函數解析式為:y=ax2+bx+c(a≠0),將A(-1,0),B(0,-1),C(1,0)三點代入函數解析式得:解得,所以此函數解析式為:.(2)∵M點的橫坐標為m,且點M在這條拋物線上,∴M點的坐標為:(m,),∴S=S△AOM+S△OBM-S△AOB=×1×(-)+×1×(-m)-×1×1=-(m+)2+,當m=-時,S有最大值為:S=-.(1)設P(x,).分兩種情況討論:①當OB為邊時,根據平行四邊形的性質知PB∥OQ,∴Q的橫坐標的絕對值等于P的橫坐標的絕對值,又∵直線的解析式為y=-x,則Q(x,-x).由PQ=OB,得:|-x-()|=1解得:x=0(不合題意,舍去),-1,,∴Q的坐標為(-1,1)或或;②當BO為對角線時,如圖,知A與P應該重合,OP=1.四邊形PBQO為平行四邊形則BQ=OP=1,Q橫坐標為1,代入y=﹣x得出Q為(1,﹣1).綜上所述:Q的坐標為:(-1,1)或或或(1,-1).點睛:本題是對二次函數的綜合考查,有待定系數法求二次函數解析式,三角形的面積,二次函數的最值問題,平行四邊形的對邊相等的性質,平面直角坐標系中兩點間的距離的表示,綜合性較強,但難度不大,仔細分析便不難求解.21、(1)、(2)證明見解析(3)28【解析】試題分析:(1)根據正方形的性質,可直接證明△CBE≌△CDF,從而得出CE=CF;(2)延長AD至F,使DF=BE,連接CF,根據(1)知∠BCE=∠DCF,即可證明∠ECF=∠BCD=90°,根據∠GCE=45°,得∠GCF=∠GCE=45°,利用全等三角形的判定方法得出△ECG≌△FCG,即GE=GF,即可得出答案GE=DF+GD=BE+GD;(3)過C作CF⊥AD的延長線于點F.則四邊形ABCF是正方形,設DF=x,則AD=12-x,根據(2)可得:DE=BE+DF=4+x,在直角△ADE中利用勾股定理即可求解;試題解析:(1)如圖1,在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF,∴△CBE≌△CDF,∴CE=CF;(2)如圖2,延長AD至F,使DF=BE,連接CF,由(1)知△CBE≌△CDF,∴∠BCE=∠DCF.∴∠BCE+∠ECD=∠DCF+∠ECD即∠ECF=∠BCD=90°,又∵∠GCE=45°,∴∠GCF=∠GCE=45°,∵CE=CF,∠GCE=∠GCF,GC=GC,∴△ECG≌△FCG,∴GE=GF,∴GE=DF+GD=BE+GD;(3)過C作CF⊥AD的延長線于點F.則四邊形ABCF是正方形.AE=AB-BE=12-4=8,設DF=x,則AD=12-x,根據(2)可得:DE=BE+DF=4+x,在直角△ADE中,AE2+AD2=DE2,則82+(12-x)2=(4+x)2,解得:x=1.則DE=4+1=2.【點睛】本題考查了全等三角形的判定和性質以及正方形的性質,解決本題的關鍵是注意每個題目之間的關系,正確作出輔助線.22、(1)C(2)n2(3)b<﹣735且b≠﹣2【解析】

(1)先求出B關于直線x=4的對稱點B′的坐標,根據A、B′的坐標可得直線AB′的解析式,把x=4代入求出P點的縱坐標即可得答案;(2)如圖:過點A作直線l的對稱點A′,連A′B′,交直線l于點P,作BH⊥l于點H,根據對稱性可知∠APG=A′PG,由∠AGP=∠BHP=90°可證明△AGP∽△BHP,根據相似三角形對應邊成比例可得m=2根據外角性質可知∠A=∠A′=α2根據對稱性質可證明△ABQ是等邊三角形,即點Q為定點,若直線y=ax+b(a≠0)與圓相切,易得P、Q重合,所以直線y=ax+b(a≠0)過定點Q,連OQ,過點A、Q分別作AM⊥y軸,QN⊥y軸,垂足分別為M、N,可證明△AMO∽△ONQ,根據相似三角形對應邊成比例可得ON、NQ的長,即可得Q點坐標,根據A、B、Q的坐標可求出直線AQ、BQ的解析式,根據P與A、B重合時b的值求出b的取值范圍即可.【詳解】(1)點B關于直線x=4的對稱點為B′(10,﹣3),∴直線AB′解析式為:y=﹣34當x=4時,y=32故答案為:C(2)如圖,過點A作直線l的對稱點A′,連A′B′,交直線l于點P作BH⊥l于點H∵點A和A′關于直線l對稱∴∠APG=∠A′PG∵∠BPH=∠A′PG∴∠APG=∠BPH∵∠AGP=∠BHP=90°∴△AGP∽△BHP∴AGBH=GP∴mn=23,即m=23∵∠APB=α,AP=AP′,∴∠A=∠A′=α2在Rt△AGP中,tanα2=(3)如圖,當

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論