


版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2023高考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知圓錐的高為3,底面半徑為,若該圓錐的頂點與底面的圓周都在同一個球面上,則這個球的體積與圓錐的體積的比值為()A. B. C. D.2.設向量,滿足,,,則的取值范圍是A. B.C. D.3.計算等于()A. B. C. D.4.的展開式中的常數(shù)項為()A.-60 B.240 C.-80 D.1805.已知拋物線的焦點為,為拋物線上一點,,當周長最小時,所在直線的斜率為()A. B. C. D.6.復數(shù)為純虛數(shù),則()A.i B.﹣2i C.2i D.﹣i7.在空間直角坐標系中,四面體各頂點坐標分別為:.假設螞蟻窩在點,一只螞蟻從點出發(fā),需要在,上分別任意選擇一點留下信息,然后再返回點.那么完成這個工作所需要走的最短路徑長度是()A. B. C. D.8.已知拋物線的焦點為,過點的直線與拋物線交于,兩點(設點位于第一象限),過點,分別作拋物線的準線的垂線,垂足分別為點,,拋物線的準線交軸于點,若,則直線的斜率為A.1 B. C. D.9.執(zhí)行如圖所示的程序框圖,若輸入,,則輸出的()A.4 B.5 C.6 D.710.已知函數(shù),若,,,則a,b,c的大小關系是()A. B. C. D.11.某四棱錐的三視圖如圖所示,則該四棱錐的體積為()A. B. C. D.12.已知雙曲線的左、右焦點分別為,圓與雙曲線在第一象限內(nèi)的交點為M,若.則該雙曲線的離心率為A.2 B.3 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.將底面直徑為4,高為的圓錐形石塊打磨成一個圓柱,則該圓柱的側(cè)面積的最大值為__________.14.執(zhí)行如圖所示的偽代碼,若輸出的y的值為13,則輸入的x的值是_______.15.對任意正整數(shù),函數(shù),若,則的取值范圍是_________;若不等式恒成立,則的最大值為_________.16.拋物線的焦點坐標為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)隨著互聯(lián)網(wǎng)金融的不斷發(fā)展,很多互聯(lián)網(wǎng)公司推出余額增值服務產(chǎn)品和活期資金管理服務產(chǎn)品,如螞蟻金服旗下的“余額寶”,騰訊旗下的“財富通”,京東旗下“京東小金庫”.為了調(diào)查廣大市民理財產(chǎn)品的選擇情況,隨機抽取1200名使用理財產(chǎn)品的市民,按照使用理財產(chǎn)品的情況統(tǒng)計得到如下頻數(shù)分布表:分組頻數(shù)(單位:名)使用“余額寶”使用“財富通”使用“京東小金庫”30使用其他理財產(chǎn)品50合計1200已知這1200名市民中,使用“余額寶”的人比使用“財富通”的人多160名.(1)求頻數(shù)分布表中,的值;(2)已知2018年“余額寶”的平均年化收益率為,“財富通”的平均年化收益率為.若在1200名使用理財產(chǎn)品的市民中,從使用“余額寶”和使用“財富通”的市民中按分組用分層抽樣方法共抽取7人,然后從這7人中隨機選取2人,假設這2人中每個人理財?shù)馁Y金有10000元,這2名市民2018年理財?shù)睦⒖偤蜑?,求的分布列及?shù)學期望.注:平均年化收益率,也就是我們所熟知的利息,理財產(chǎn)品“平均年化收益率為”即將100元錢存入某理財產(chǎn)品,一年可以獲得3元利息.18.(12分)記無窮數(shù)列的前項中最大值為,最小值為,令,則稱是“極差數(shù)列”.(1)若,求的前項和;(2)證明:的“極差數(shù)列”仍是;(3)求證:若數(shù)列是等差數(shù)列,則數(shù)列也是等差數(shù)列.19.(12分)已知,,設函數(shù),.(1)若,求不等式的解集;(2)若函數(shù)的最小值為1,證明:.20.(12分)在中,角,,的對邊分別為,其中,.(1)求角的值;(2)若,,為邊上的任意一點,求的最小值.21.(12分)在直角坐標系中,直線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求和的直角坐標方程;(2)已知為曲線上的一個動點,求線段的中點到直線的最大距離.22.(10分)已知函數(shù)(),且只有一個零點.(1)求實數(shù)a的值;(2)若,且,證明:.
2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【答案解析】
計算求半徑為,再計算球體積和圓錐體積,計算得到答案.【題目詳解】如圖所示:設球半徑為,則,解得.故求體積為:,圓錐的體積:,故.故選:.【答案點睛】本題考查了圓錐,球體積,圓錐的外接球問題,意在考查學生的計算能力和空間想象能力.2.B【答案解析】
由模長公式求解即可.【題目詳解】,當時取等號,所以本題答案為B.【答案點睛】本題考查向量的數(shù)量積,考查模長公式,準確計算是關鍵,是基礎題.3.A【答案解析】
利用誘導公式、特殊角的三角函數(shù)值,結(jié)合對數(shù)運算,求得所求表達式的值.【題目詳解】原式.故選:A【答案點睛】本小題主要考查誘導公式,考查對數(shù)運算,屬于基礎題.4.D【答案解析】
求的展開式中的常數(shù)項,可轉(zhuǎn)化為求展開式中的常數(shù)項和項,再求和即可得出答案.【題目詳解】由題意,中常數(shù)項為,中項為,所以的展開式中的常數(shù)項為:.故選:D【答案點睛】本題主要考查二項式定理的應用和二項式展開式的通項公式,考查學生計算能力,屬于基礎題.5.A【答案解析】
本道題繪圖發(fā)現(xiàn)三角形周長最小時A,P位于同一水平線上,計算點P的坐標,計算斜率,即可.【題目詳解】結(jié)合題意,繪制圖像要計算三角形PAF周長最小值,即計算PA+PF最小值,結(jié)合拋物線性質(zhì)可知,PF=PN,所以,故當點P運動到M點處,三角形周長最小,故此時M的坐標為,所以斜率為,故選A.【答案點睛】本道題考查了拋物線的基本性質(zhì),難度中等.6.B【答案解析】
復數(shù)為純虛數(shù),則實部為0,虛部不為0,求出,即得.【題目詳解】∵為純虛數(shù),∴,解得..故選:.【答案點睛】本題考查復數(shù)的分類,屬于基礎題.7.C【答案解析】
將四面體沿著劈開,展開后最短路徑就是的邊,在中,利用余弦定理即可求解.【題目詳解】將四面體沿著劈開,展開后如下圖所示:最短路徑就是的邊.易求得,由,知,由余弦定理知其中,∴故選:C【答案點睛】本題考查了余弦定理解三角形,需熟記定理的內(nèi)容,考查了學生的空間想象能力,屬于中檔題.8.C【答案解析】
根據(jù)拋物線定義,可得,,又,所以,所以,設,則,則,所以,所以直線的斜率.故選C.9.C【答案解析】
根據(jù)程序框圖程序運算即可得.【題目詳解】依程序運算可得:,故選:C【答案點睛】本題主要考查了程序框圖的計算,解題的關鍵是理解程序框圖運行的過程.10.D【答案解析】
根據(jù)題意,求出函數(shù)的導數(shù),由函數(shù)的導數(shù)與函數(shù)單調(diào)性的關系分析可得在上為增函數(shù),又由,分析可得答案.【題目詳解】解:根據(jù)題意,函數(shù),其導數(shù)函數(shù),則有在上恒成立,則在上為增函數(shù);又由,則;故選:.【答案點睛】本題考查函數(shù)的導數(shù)與函數(shù)單調(diào)性的關系,涉及函數(shù)單調(diào)性的性質(zhì),屬于基礎題.11.B【答案解析】
由三視圖知該四棱錐是底面為正方形,且一側(cè)棱垂直于底面,由此求出四棱錐的體積.【題目詳解】由三視圖知該四棱錐是底面為正方形,且一側(cè)棱垂直于底面,畫出四棱錐的直觀圖,如圖所示:則該四棱錐的體積為.故選:B.【答案點睛】本題考查了利用三視圖求幾何體體積的問題,是基礎題.12.D【答案解析】
本題首先可以通過題意畫出圖像并過點作垂線交于點,然后通過圓與雙曲線的相關性質(zhì)判斷出三角形的形狀并求出高的長度,的長度即點縱坐標,然后將點縱坐標帶入圓的方程即可得出點坐標,最后將點坐標帶入雙曲線方程即可得出結(jié)果?!绢}目詳解】根據(jù)題意可畫出以上圖像,過點作垂線并交于點,因為,在雙曲線上,所以根據(jù)雙曲線性質(zhì)可知,,即,,因為圓的半徑為,是圓的半徑,所以,因為,,,,所以,三角形是直角三角形,因為,所以,,即點縱坐標為,將點縱坐標帶入圓的方程中可得,解得,,將點坐標帶入雙曲線中可得,化簡得,,,,故選D?!敬鸢更c睛】本題考查了圓錐曲線的相關性質(zhì),主要考察了圓與雙曲線的相關性質(zhì),考查了圓與雙曲線的綜合應用,考查了數(shù)形結(jié)合思想,體現(xiàn)了綜合性,提高了學生的邏輯思維能力,是難題。二、填空題:本題共4小題,每小題5分,共20分。13.【答案解析】
由題意欲使圓柱側(cè)面積最大,需使圓柱內(nèi)接于圓錐.設圓柱的高為h,底面半徑為r,則,將側(cè)面積表示成關于的函數(shù),再利用一元二次函數(shù)的性質(zhì)求最值.【題目詳解】欲使圓柱側(cè)面積最大,需使圓柱內(nèi)接于圓錐.設圓柱的高為h,底面半徑為r,則,所以.∴,當時,的最大值為.故答案為:.【答案點睛】本題考查圓柱的側(cè)面積的最值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、,考查空間想象能力和運算求解能力,求解時注意將問題轉(zhuǎn)化為函數(shù)的最值問題.14.8【答案解析】
根據(jù)偽代碼逆向運算求得結(jié)果.【題目詳解】輸入,若,則,不合題意若,則,滿足題意本題正確結(jié)果:【答案點睛】本題考查算法中的語言,屬于基礎題.15.【答案解析】
將代入求解即可;當為奇數(shù)時,,則轉(zhuǎn)化為,設,由單調(diào)性求得的最小值;同理,當為偶數(shù)時,,則轉(zhuǎn)化為,設,利用導函數(shù)求得的最小值,進而比較得到的最大值.【題目詳解】由題,,解得.當為奇數(shù)時,,由,得,而函數(shù)為單調(diào)遞增函數(shù),所以,所以;當為偶數(shù)時,,由,得,設,,單調(diào)遞增,,所以,綜上可知,若不等式恒成立,則的最大值為.故答案為:(1);(2)【答案點睛】本題考查利用導函數(shù)求最值,考查分類討論思想和轉(zhuǎn)化思想.16.【答案解析】
變換得到,計算焦點得到答案.【題目詳解】拋物線的標準方程為,,所以焦點坐標為.故答案為:【答案點睛】本題考查了拋物線的焦點坐標,屬于簡單題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)680元.【答案解析】
(1)根據(jù)題意,列方程,然后求解即可(2)根據(jù)題意,計算出10000元使用“余額寶”的利息為(元)和10000元使用“財富通”的利息為(元),得到所有可能的取值為560(元),700(元),840(元),然后根據(jù)所有可能的取值,計算出相應的概率,并列出的分布列表,然后求解數(shù)學期望即可【題目詳解】(1)據(jù)題意,得,所以.(2)據(jù),得這被抽取的7人中使用“余額寶”的有4人,使用“財富通”的有3人.10000元使用“余額寶”的利息為(元).10000元使用“財富通”的利息為(元).所有可能的取值為560(元),700(元),840(元).,,.的分布列為560700840所以(元).【答案點睛】本題考查頻數(shù)分布表以及分布列和數(shù)學期望問題,屬于基礎題18.(1)(2)證明見解析(3)證明見解析【答案解析】
(1)由是遞增數(shù)列,得,由此能求出的前項和.(2)推導出,,由此能證明的“極差數(shù)列”仍是.(3)證當數(shù)列是等差數(shù)列時,設其公差為,,是一個單調(diào)遞增數(shù)列,從而,,由,,,分類討論,能證明若數(shù)列是等差數(shù)列,則數(shù)列也是等差數(shù)列.【題目詳解】(1)解:∵無窮數(shù)列的前項中最大值為,最小值為,,,是遞增數(shù)列,∴,∴的前項和.(2)證明:∵,,∴,∴,∵,∴,∴的“極差數(shù)列”仍是(3)證明:當數(shù)列是等差數(shù)列時,設其公差為,,根據(jù),的定義,得:,,且兩個不等式中至少有一個取等號,當時,必有,∴,∴是一個單調(diào)遞增數(shù)列,∴,,∴,∴,∴是等差數(shù)列,當時,則必有,∴,∴是一個單調(diào)遞減數(shù)列,∴,,∴,∴.∴是等差數(shù)列,當時,,∵,中必有一個為0,根據(jù)上式,一個為0,為一個必為0,∴,,∴數(shù)列是常數(shù)數(shù)列,則數(shù)列是等差數(shù)列.綜上,若數(shù)列是等差數(shù)列,則數(shù)列也是等差數(shù)列.【答案點睛】本小題主要考查新定義數(shù)列的理解和運用,考查等差數(shù)列的證明,考查數(shù)列的單調(diào)性,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,屬于難題.19.(1);(2)證明見解析【答案解析】
(1)利用零點分段法,求出各段的取值范圍然后取并集可得結(jié)果.(2)利用絕對值三角不等式可得,然后使用柯西不等式可得結(jié)果.【題目詳解】(1)由,所以由當時,則所以當時,則當時,則綜上所述:(2)由當且僅當時取等號所以由,所以所以令根據(jù)柯西不等式,則當且僅當,即取等號由故,又則【答案點睛】本題考查使用零點分段法求解絕對值不等式以及柯西不等式的應用,屬基礎題.20.(1);(2).【答案解析】
(1)利用余弦定理和二倍角的正弦公式,化簡即可得出結(jié)果;(2)在中,由余弦定理得,在中結(jié)合正弦定理求出,從而得出,即可得出的解析式,最后結(jié)合斜率的幾何意義,即可求出的最小值.【題目詳解】(1),,由題知,,則,則,,;(2)在中,由余弦定理得,,設,其中.在中,,,,,所以,,所以的幾何意義為兩點連線斜率的相反
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公司車輛掛靠合同范例
- 2024年青海高考數(shù)學模擬試卷及答案
- 數(shù)據(jù)中心不間斷電源租賃及遠程監(jiān)控服務合同
- 網(wǎng)店轉(zhuǎn)型期間服務保障及收益分配合同
- 國際貿(mào)易爭端解決專家顧問雇傭合同
- 城市綜合體照明系統(tǒng)日常維護與應急搶修合同
- 環(huán)保產(chǎn)業(yè)投資風險評估與控制有限合伙投資合同
- 幼兒園幼兒英語教育合作與推廣合同
- 影視制作團隊群眾演員化妝間租賃及化妝效果評估合同
- 基因治療藥物研發(fā)生產(chǎn)安全風險評估合同
- 《甲狀腺腫》課件
- 2024華師一附中自招考試數(shù)學試題
- 部編版歷史八年級下冊第六單元 第19課《社會生活的變遷》說課稿
- NDJ-79型旋轉(zhuǎn)式粘度計操作規(guī)程
- 藥店轉(zhuǎn)讓協(xié)議合同
- 社區(qū)工作者2024年終工作總結(jié)
- 柴油機維修施工方案
- 酒店裝修改造工程項目可行性研究報告
- 基底節(jié)腦出血護理查房
- 《系統(tǒng)性紅斑狼瘡診療規(guī)范2023》解讀
- 【企業(yè)盈利能力探析的國內(nèi)外文獻綜述2400字】
評論
0/150
提交評論