2023學年四川省德陽市高中高考數(shù)學四模試卷(含答案解析)_第1頁
2023學年四川省德陽市高中高考數(shù)學四模試卷(含答案解析)_第2頁
2023學年四川省德陽市高中高考數(shù)學四模試卷(含答案解析)_第3頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023高考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的漸近線方程為,且其右焦點為,則雙曲線的方程為()A. B. C. D.2.若,則下列關系式正確的個數(shù)是()①②③④A.1 B.2 C.3 D.43.設復數(shù)滿足,則()A. B. C. D.4.設全集,集合,則=()A. B. C. D.5.已知,則()A. B. C. D.6.數(shù)列滿足:,則數(shù)列前項的和為A. B. C. D.7.設是虛數(shù)單位,復數(shù)()A. B. C. D.8.函數(shù)圖象的大致形狀是()A. B.C. D.9.設命題p:>1,n2>2n,則p為()A. B.C. D.10.若P是的充分不必要條件,則p是q的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件11.臺球是一項國際上廣泛流行的高雅室內(nèi)體育運動,也叫桌球(中國粵港澳地區(qū)的叫法)、撞球(中國臺灣地區(qū)的叫法)控制撞球點、球的旋轉等控制母球走位是擊球的一項重要技術,一次臺球技術表演節(jié)目中,在臺球桌上,畫出如圖正方形ABCD,在點E,F(xiàn)處各放一個目標球,表演者先將母球放在點A處,通過擊打母球,使其依次撞擊點E,F(xiàn)處的目標球,最后停在點C處,若AE=50cm.EF=40cm.FC=30cm,∠AEF=∠CFE=60°,則該正方形的邊長為()A.50cm B.40cm C.50cm D.20cm12.雙曲線x26-y23=1的漸近線與圓(x-3)2+y2=A.3 B.2C.3 D.6二、填空題:本題共4小題,每小題5分,共20分。13.在的展開式中的系數(shù)為,則_______.14.已知(2x-1)7=ao+a1x+a2x2+…+a7x7,則a2=____.15.已知等比數(shù)列的各項都是正數(shù),且成等差數(shù)列,則=__________.16.已知函數(shù)若關于的不等式的解集是,則的值為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某大型單位舉行了一次全體員工都參加的考試,從中隨機抽取了20人的分數(shù).以下莖葉圖記錄了他們的考試分數(shù)(以十位數(shù)字為莖,個位數(shù)字為葉):若分數(shù)不低于95分,則稱該員工的成績?yōu)椤皟?yōu)秀”.(1)從這20人中任取3人,求恰有1人成績“優(yōu)秀”的概率;(2)根據(jù)這20人的分數(shù)補全下方的頻率分布表和頻率分布直方圖,并根據(jù)頻率分布直方圖解決下面的問題.組別分組頻數(shù)頻率1234①估計所有員工的平均分數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);②若從所有員工中任選3人,記表示抽到的員工成績?yōu)椤皟?yōu)秀”的人數(shù),求的分布列和數(shù)學期望.18.(12分)如圖中,為的中點,,,.(1)求邊的長;(2)點在邊上,若是的角平分線,求的面積.19.(12分)已知直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,曲線的極坐標方程為.(1)求直線的普通方程及曲線的直角坐標方程;(2)設點,直線與曲線交于兩點,求的值.20.(12分)已知函數(shù),為實數(shù),且.(Ⅰ)當時,求的單調(diào)區(qū)間和極值;(Ⅱ)求函數(shù)在區(qū)間,上的值域(其中為自然對數(shù)的底數(shù)).21.(12分)已知橢圓的左,右焦點分別為,,,M是橢圓E上的一個動點,且的面積的最大值為.(1)求橢圓E的標準方程,(2)若,,四邊形ABCD內(nèi)接于橢圓E,,記直線AD,BC的斜率分別為,,求證:為定值.22.(10分)已知曲線的參數(shù)方程為(為參數(shù)).以直角坐標系的原點為極點,軸的正半軸為極軸建立坐標系,曲線的極坐標方程為.(1)求的普通方程和的直角坐標方程;(2)若過點的直線與交于,兩點,與交于,兩點,求的取值范圍.

2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【答案解析】試題分析:由題意得,,所以,,所求雙曲線方程為.考點:雙曲線方程.2.D【答案解析】

a,b可看成是與和交點的橫坐標,畫出圖象,數(shù)形結合處理.【題目詳解】令,,作出圖象如圖,由,的圖象可知,,,②正確;,,有,①正確;,,有,③正確;,,有,④正確.故選:D.【答案點睛】本題考查利用函數(shù)圖象比較大小,考查學生數(shù)形結合的思想,是一道中檔題.3.D【答案解析】

根據(jù)復數(shù)運算,即可容易求得結果.【題目詳解】.故選:D.【答案點睛】本題考查復數(shù)的四則運算,屬基礎題.4.A【答案解析】

先求得全集包含的元素,由此求得集合的補集.【題目詳解】由解得,故,所以,故選A.【答案點睛】本小題主要考查補集的概念及運算,考查一元二次不等式的解法,屬于基礎題.5.D【答案解析】

根據(jù)指數(shù)函數(shù)的單調(diào)性,即當?shù)讛?shù)大于1時單調(diào)遞增,當?shù)讛?shù)大于零小于1時單調(diào)遞減,對選項逐一驗證即可得到正確答案.【題目詳解】因為,所以,所以是減函數(shù),又因為,所以,,所以,,所以A,B兩項均錯;又,所以,所以C錯;對于D,,所以,故選D.【答案點睛】這個題目考查的是應用不等式的性質(zhì)和指對函數(shù)的單調(diào)性比較大小,兩個式子比較大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性質(zhì)得到大小關系,有時可以代入一些特殊的數(shù)據(jù)得到具體值,進而得到大小關系.6.A【答案解析】分析:通過對an﹣an+1=2anan+1變形可知,進而可知,利用裂項相消法求和即可.詳解:∵,∴,又∵=5,∴,即,∴,∴數(shù)列前項的和為,故選A.點睛:裂項相消法是最難把握的求和方法之一,其原因是有時很難找到裂項的方向,突破這一難點的方法是根據(jù)式子的結構特點,常見的裂項技巧:(1);(2);(3);(4);此外,需注意裂項之后相消的過程中容易出現(xiàn)丟項或多項的問題,導致計算結果錯誤.7.D【答案解析】

利用復數(shù)的除法運算,化簡復數(shù),即可求解,得到答案.【題目詳解】由題意,復數(shù),故選D.【答案點睛】本題主要考查了復數(shù)的除法運算,其中解答中熟記復數(shù)的除法運算法則是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.8.B【答案解析】

判斷函數(shù)的奇偶性,可排除A、C,再判斷函數(shù)在區(qū)間上函數(shù)值與的大小,即可得出答案.【題目詳解】解:因為,所以,所以函數(shù)是奇函數(shù),可排除A、C;又當,,可排除D;故選:B.【答案點睛】本題考查函數(shù)表達式判斷函數(shù)圖像,屬于中檔題.9.C【答案解析】根據(jù)命題的否定,可以寫出:,所以選C.10.B【答案解析】

試題分析:通過逆否命題的同真同假,結合充要條件的判斷方法判定即可.由p是的充分不必要條件知“若p則”為真,“若則p”為假,根據(jù)互為逆否命題的等價性知,“若q則”為真,“若則q”為假,故選B.考點:邏輯命題11.D【答案解析】

過點做正方形邊的垂線,如圖,設,利用直線三角形中的邊角關系,將用表示出來,根據(jù),列方程求出,進而可得正方形的邊長.【題目詳解】過點做正方形邊的垂線,如圖,設,則,,則,因為,則,整理化簡得,又,得,.即該正方形的邊長為.故選:D.【答案點睛】本題考查直角三角形中的邊角關系,關鍵是要構造直角三角形,是中檔題.12.A【答案解析】

由圓心到漸近線的距離等于半徑列方程求解即可.【題目詳解】雙曲線的漸近線方程為y=±22x,圓心坐標為(3,0).由題意知,圓心到漸近線的距離等于圓的半徑r,即r=±答案:A【答案點睛】本題考查了雙曲線的漸近線方程及直線與圓的位置關系,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.2【答案解析】

首先求出的展開項中的系數(shù),然后根據(jù)系數(shù)為即可求出的取值.【題目詳解】由題知,當時有,解得.故答案為:.【答案點睛】本題主要考查了二項式展開項的系數(shù),屬于簡單題.14.【答案解析】

根據(jù)二項展開式的通項公式即可得結果.【題目詳解】解:(2x-1)7的展開式通式為:當時,,則.故答案為:【答案點睛】本題考查求二項展開式指定項的系數(shù),是基礎題.15.【答案解析】

根據(jù)等差中項性質(zhì),結合等比數(shù)列通項公式即可求得公比;代入表達式,結合對數(shù)式的化簡即可求解.【題目詳解】等比數(shù)列的各項都是正數(shù),且成等差數(shù)列,則,由等比數(shù)列通項公式可知,所以,解得或(舍),所以由對數(shù)式運算性質(zhì)可得,故答案為:.【答案點睛】本題考查了等差數(shù)列通項公式的簡單應用,等比數(shù)列通項公式的用法,對數(shù)式的化簡運算,屬于中檔題.16.【答案解析】

根據(jù)題意可知的兩根為,再根據(jù)解集的區(qū)間端點得出參數(shù)的關系,再求解即可.【題目詳解】解:因為函數(shù),關于的不等式的解集是的兩根為:和;所以有:且;且;;故答案為:【答案點睛】本題主要考查了不等式的解集與參數(shù)之間的關系,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)①82,②分布列見解析,【答案解析】

(1)從20人中任取3人共有種結果,恰有1人成績“優(yōu)秀”共有種結果,利用古典概型的概率計算公式計算即可;(2)①平均數(shù)的估計值為各小矩形的組中值與其面積乘積的和;②要注意服從的是二項分布,不是超幾何分布,利用二項分布的分布列及期望公式求解即可.【題目詳解】(1)設從20人中任取3人恰有1人成績“優(yōu)秀”為事件,則,所以,恰有1人“優(yōu)秀”的概率為.(2)組別分組頻數(shù)頻率120.01260.03380.04440.02①,估計所有員工的平均分為82②的可能取值為0、1、2、3,隨機選取1人是“優(yōu)秀”的概率為,∴;;;;∴的分布列為0123∵,∴數(shù)學期望.【答案點睛】本題考查古典概型的概率計算以及二項分布期望的問題,涉及到頻率分布直方圖、平均數(shù)的估計值等知識,是一道容易題.18.(1)10;(2).【答案解析】

(1)由題意可得cos∠ADB=﹣cos∠ADC,由已知利用余弦定理可得:9+BD2﹣52+9+BD2﹣16=0,進而解得BC的值.(2)由(1)可知△ADC為直角三角形,可求S△ADC6,S△ABC=2S△ADC=12,利用角平分線的性質(zhì)可得,根據(jù)S△ABC=S△BCE+S△ACE可求S△BCE的值.【題目詳解】(1)因為在邊上,所以,在和中由余弦定理,得,因為,,,,所以,所以,.所以邊的長為10.(2)由(1)知為直角三角形,所以,.因為是的角平分線,所以.所以,所以.即的面積為.【答案點睛】本題主要考查了余弦定理,三角形的面積公式,角平分線的性質(zhì)在解三角形中的綜合應用,考查了轉化思想和數(shù)形結合思想,屬于中檔題.19.(1);(2)【答案解析】

(1)直接利用轉換關系的應用,把參數(shù)方程極坐標方程和直角坐標方程之間進行轉換.(2)利用(1)的結論,進一步利用一元二次方程根和系數(shù)的關系式的應用求出結果.【題目詳解】解:(1)直線的參數(shù)方程為(為參數(shù)),轉換為直角坐標方程為.曲線的極坐標方程為.轉換為,轉換為直角坐標方程為.(2)直線的參數(shù)方程為(為參數(shù)),轉換為標準式為(為參數(shù)),代入圓的直角坐標方程整理得,所以,..【答案點睛】本題屬于基礎本題考查的知識要點:主要考查極坐標,參數(shù)方程與普通方程互化,及求三角形面積.需要熟記極坐標系與參數(shù)方程的公式,及與解析幾何相關的直線與曲線位置關系的一些解題思路.20.(Ⅰ)極大值0,沒有極小值;函數(shù)的遞增區(qū)間,遞減區(qū)間,(Ⅱ)見解析【答案解析】

(Ⅰ)由,令,得增區(qū)間為,令,得減區(qū)間為,所以有極大值,無極小值;(Ⅱ)由,分,和三種情況,考慮函數(shù)在區(qū)間上的值域,即可得到本題答案.【題目詳解】當時,,,當時,,函數(shù)單調(diào)遞增,當時,,函數(shù)單調(diào)遞減,故當時,函數(shù)取得極大值,沒有極小值;函數(shù)的增區(qū)間為,減區(qū)間為,,當時,,在上單調(diào)遞增,即函數(shù)的值域為;當時,,在上單調(diào)遞減,即函數(shù)的值域為;當時,易得時,,在上單調(diào)遞增,時,,在上單調(diào)遞減,故當時,函數(shù)取得最大值,最小值為,中最小的,當時,,最小值;當,,最小值;綜上,當時,函數(shù)的值域為,當時,函數(shù)的值域,當時,函數(shù)的值域為,當時,函數(shù)的值域為.【答案點睛】本題主要考查利用導數(shù)求單調(diào)區(qū)間和極值,以及利用導數(shù)研究含參函數(shù)在給定區(qū)間的值域,考查學生的運算求解能力,體現(xiàn)了分類討論的數(shù)學思想.21.(1)(2)證明見解析【答案解析】

(1)設橢圓E的半焦距為c,由題意可知,當M為橢圓E的上頂點或下頂點時,的面積取得最大值,求出,即可得答案;(2)根據(jù)題意可知,,因為,所以可設直線CD的方程為,將直線代入曲線的方程,利用韋達定理得到的關系,再代入斜率公式可證得為定值.【題目詳解】(1)設橢圓E的半焦距為c,由題意可知,當M為橢圓E的上頂點或下頂點時,的面積取得最大值.所以,所以,,故橢圓E的標準方程為.(2)根據(jù)題意可知,,因為,所以可設直線CD的方程為.由,消去y可得,所以,即.直線AD的斜率,直線BC的斜率,所以,故為定值.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論