內(nèi)蒙古赤峰市第二中學2023屆數(shù)學高一上期末教學質(zhì)量檢測試題含解析_第1頁
內(nèi)蒙古赤峰市第二中學2023屆數(shù)學高一上期末教學質(zhì)量檢測試題含解析_第2頁
內(nèi)蒙古赤峰市第二中學2023屆數(shù)學高一上期末教學質(zhì)量檢測試題含解析_第3頁
內(nèi)蒙古赤峰市第二中學2023屆數(shù)學高一上期末教學質(zhì)量檢測試題含解析_第4頁
內(nèi)蒙古赤峰市第二中學2023屆數(shù)學高一上期末教學質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學年高一上數(shù)學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè)集合,則A. B.C. D.2.若方程有兩個不相等的實數(shù)根,則實根的取值范圍是()A. B.C. D.3.函數(shù)的零點所在的區(qū)間是()A.(0,1) B.(1,2)C.(2,3) D.(3,4)4.設(shè),則的大小關(guān)系為()A. B.C. D.5.在上,滿足的的取值范圍是A. B.C. D.6.已知集合A={x|<2},B={x|log2x>0},則()A. B.A∩B=C.或 D.7.過點和,圓心在軸上的圓的方程為A. B.C D.8.函數(shù)與的圖象在上的交點有()A.個 B.個C.個 D.個9.設(shè)函數(shù)f(x)=若,則實數(shù)的取值范圍是()A.B.C.D.10.已知函數(shù)滿足,則()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.求方程在區(qū)間內(nèi)的實數(shù)根,用“二分法”確定的下一個有根的區(qū)間是____________.12.已知函數(shù)若關(guān)于x的方程有4個解,分別為,,,,其中,則______,的取值范圍是______13.已知函數(shù)則不等式的解集是_____________14.已知與之間的一組數(shù)據(jù)如下,且它們之間存在較好的線性關(guān)系,則與的回歸直線方程必過定點__________15.已知函數(shù),若,則_____16.在三棱柱中,各棱長相等,側(cè)棱垂直于底面,點是側(cè)面的中心,則與平面所成角的大小是______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知集合,集合.(1)當時,求;(2)若,求實數(shù)的取值范圍.18.已知函數(shù)其中.(1)當a=0時,求f(x)的值域;(2)若f(x)有兩個零點,求a的取值范圍.19.(附加題,本小題滿分10分,該題計入總分)已知函數(shù),若在區(qū)間內(nèi)有且僅有一個,使得成立,則稱函數(shù)具有性質(zhì)(1)若,判斷是否具有性質(zhì),說明理由;(2)若函數(shù)具有性質(zhì),試求實數(shù)的取值范圍20.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<)的圖象如圖所示(1)求函數(shù)f(x)的解析式及其對稱軸方程(2)求函數(shù)f(x)在區(qū)間[﹣,﹣]上的最大值和最小值,并指出取得最值時的x的值21.求值:(1)(2)已知,求的值

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】集合,根據(jù)元素和集合的關(guān)系知道故答案為C2、B【解析】方程有兩個不相等的實數(shù)根,轉(zhuǎn)化為有兩個不等根,根據(jù)圖像得到只需要故答案為B.3、B【解析】先求得函數(shù)的單調(diào)性,利用函數(shù)零點存在性定理,即可得解.【詳解】解:因為函數(shù)均為上的單調(diào)遞減函數(shù),所以函數(shù)在上單調(diào)遞減,因為,,所以函數(shù)的零點所在的區(qū)間是.故選:B4、D【解析】利用指數(shù)函數(shù)與對數(shù)函數(shù)的性質(zhì),即可得出的大小關(guān)系.【詳解】因為,,,所以.故選:D.【點睛】本題考查的是有關(guān)指數(shù)冪和對數(shù)值的比較大小問題,在解題的過程中,注意應用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性,確定其對應值的范圍.比較指對冪形式的數(shù)的大小關(guān)系,常用方法:(1)利用指數(shù)函數(shù)的單調(diào)性:,當時,函數(shù)遞增;當時,函數(shù)遞減;(2)利用對數(shù)函數(shù)的單調(diào)性:,當時,函數(shù)遞增;當時,函數(shù)遞減;(3)借助于中間值,例如:0或1等.5、C【解析】直接利用正弦函數(shù)的性質(zhì)求解即可【詳解】上,滿足的的取值范圍:.故選C【點睛】本題考查正弦函數(shù)的圖象與性質(zhì),考查計算能力,是基礎(chǔ)題6、A【解析】先分別求出集合A和B,再利用交集定義和并集定義能求出結(jié)果【詳解】由2-x<2得x>-1,所以A={x|x>-1};由log2x>0得x>1,所以B={x|x>1}.所以A∩B={x|x>1}.故選A【點睛】本題考查交集、并集的求法及應用,考查指數(shù)對數(shù)不等式的解法,是基礎(chǔ)題7、D【解析】假設(shè)圓心坐標,利用圓心到兩點距離相等可求得圓心,再利用兩點間距離公式求得半徑,從而得到圓的方程.【詳解】設(shè)圓心坐標為:則:,解得:圓心為,半徑所求圓的方程為:本題正確選項:【點睛】本題考查已知圓心所在直線和圓上兩點求解圓的方程的問題,屬于基礎(chǔ)題.8、B【解析】在上解出方程,得出方程解的個數(shù)即可.詳解】當時,解方程,得,整理得,得或.解方程,解得、、、或.解方程,解得、、.因此,方程在上的解有個.故選B.【點睛】本題考查正切函數(shù)與正弦函數(shù)圖象的交點個數(shù),可以利用圖形法解決,也轉(zhuǎn)化為方程根的個數(shù)來處理,考查計算能力,屬于中等題.9、C【解析】由于的范圍不確定,故應分和兩種情況求解.【詳解】當時,,由得,所以,可得:,當時,,由得,所以,即,即,綜上可知:或.故選:C【點睛】本題主要考查了分段函數(shù),解不等式的關(guān)鍵是對的范圍討論,分情況解,屬于中檔題.10、D【解析】由已知可得出,利用弦化切可得出關(guān)于的方程,結(jié)合可求得的值.【詳解】因為,且,則,,可得,解得.故選:D二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】根據(jù)二分法的步驟可求得結(jié)果.【詳解】令,因為,,,所以下一個有根的區(qū)間是.故答案為:12、①.1②.【解析】作出圖象,將方程有4個解,轉(zhuǎn)化為圖象與圖象有4個交點,根據(jù)二次函數(shù)的對稱性,對數(shù)函數(shù)的性質(zhì),可得的、的范圍與關(guān)系,結(jié)合圖象,可得m的范圍,綜合分析,即可得答案.【詳解】作出圖象,由方程有4個解,可得圖象與圖象有4個交點,且,如圖所示:由圖象可知:且因為,所以,由,可得,因為,所以所以,整理得;當時,令,可得,由韋達定理可得所以,因為且,所以或,則或,所以故答案為:1,【點睛】解題的關(guān)鍵是將函數(shù)求解問題,轉(zhuǎn)化為圖象與圖象求交點問題,再結(jié)合二次函數(shù),對數(shù)函數(shù)的性質(zhì)求解即可,考查數(shù)形結(jié)合,分析理解,計算化簡的能力,屬中檔題.13、【解析】分和0的大小關(guān)系分別代入對應的解析式即可求解結(jié)論.【詳解】∵函數(shù),∴當,即時,,故;當,即時,,故;∴不等式的解集是:.故答案為:.14、【解析】因為與的回歸直線方程必過定點則與的回歸直線方程必過定點.即答案為.15、-2020【解析】根據(jù)題意,設(shè)g(x)=f(x)+1=asinx+btanx,分析g(x)為奇函數(shù),結(jié)合函數(shù)的奇偶性可得g(2)+g(﹣2)=f(2)+1+f(﹣2)+1=0,計算可得答案【詳解】根據(jù)題意,函數(shù)f(x)=asinx+btanx﹣1,設(shè)g(x)=f(x)+1=asinx+btanx,有g(shù)(﹣x)=asin(﹣x)+btan(﹣x)=﹣(asinx+btanx)=﹣g(x),則函數(shù)g(x)為奇函數(shù),則g(2)+g(﹣2)=f(2)+1+f(﹣2)+1=0,又由f(﹣2)=2018,則f(2)=﹣2020;故答案為-2020【點睛】本題考查函數(shù)奇偶性的性質(zhì)以及應用,構(gòu)造函數(shù)g(x)=f(x)+1是解題的關(guān)鍵,屬于中檔題16、60°【解析】取BC的中點E,則,則即為所求,設(shè)棱長為2,則,三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)先分別求出,然后根據(jù)集合的并集的概念求解出的結(jié)果;(2)根據(jù)得到,由此列出不等式組求解出的取值范圍.【詳解】(1)當時,,∴;(2)∵,∴,則有:,解之得:.∴實數(shù)的取值范圍是【點睛】本題考查集合的并集運算以及根據(jù)集合的包含關(guān)系求解參數(shù)范圍,難度一般.根據(jù)集合間的包含關(guān)系求解參數(shù)范圍時,要注意分析集合為空集的可能.18、(1);(2)【解析】(1)分別求出和的值域即可;(2)分兩種情況討論,若,有1個零點,時,有1個零點;若,無零點,時,有2個零點.【詳解】(1)當時,,則當時,,當時,單調(diào)遞增,則,綜上,的值域為;(2)當時,,當時,單調(diào)遞增,若,有1個零點,則,則時,也應有1個零點,所以,又,則;若,無零點,則,則時,有2個零點,所以;綜上,a的取值范圍為.19、(Ⅰ)具有性質(zhì);(Ⅱ)或或【解析】(Ⅰ)具有性質(zhì).若存在,使得,解方程求出方程的根,即可證得;(Ⅱ)依題意,若函數(shù)具有性質(zhì),即方程在上有且只有一個實根.設(shè),即在上有且只有一個零點.討論的取值范圍,結(jié)合零點存在定理,即可得到的范圍試題解析:(Ⅰ)具有性質(zhì)依題意,若存在,使,則時有,即,,.由于,所以.又因為區(qū)間內(nèi)有且僅有一個,使成立,所以具有性質(zhì)5分(Ⅱ)依題意,若函數(shù)具有性質(zhì),即方程在上有且只有一個實根設(shè),即在上有且只有一個零點解法一:(1)當時,即時,可得在上為增函數(shù),只需解得交集得(2)當時,即時,若使函數(shù)在上有且只有一個零點,需考慮以下3種情況:(?。r,在上有且只有一個零點,符合題意(ⅱ)當即時,需解得交集得(ⅲ)當時,即時,需解得交集得(3)當時,即時,可得在上為減函數(shù)只需解得交集得綜上所述,若函數(shù)具有性質(zhì),實數(shù)的取值范圍是或或14分解法二:依題意,(1)由得,,解得或同時需要考慮以下三種情況:(2)由解得(3)由解得不等式組無解(4)由解得解得綜上所述,若函數(shù)具有性質(zhì),實數(shù)的取值范圍是或或14分考點:1.零點存在定理;2.分類討論的思想20、(1);對稱軸(2)當時,;當時,【解析】(1)由圖知,,由,可求得,由可求得;(2)根據(jù)的范圍求

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論