2023學年四川省達州市高三六校第一次聯(lián)考數(shù)學試卷(含答案解析)_第1頁
2023學年四川省達州市高三六校第一次聯(lián)考數(shù)學試卷(含答案解析)_第2頁
2023學年四川省達州市高三六校第一次聯(lián)考數(shù)學試卷(含答案解析)_第3頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023高考數(shù)學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.拋物線的焦點為,點是上一點,,則()A. B. C. D.2.已知為虛數(shù)單位,復數(shù)滿足,則復數(shù)在復平面內對應的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知P是雙曲線漸近線上一點,,是雙曲線的左、右焦點,,記,PO,的斜率為,k,,若,-2k,成等差數(shù)列,則此雙曲線的離心率為()A. B. C. D.4.已知定義在上函數(shù)的圖象關于原點對稱,且,若,則()A.0 B.1 C.673 D.6745.函數(shù)(其中,,)的圖象如圖,則此函數(shù)表達式為()A. B.C. D.6.已知函數(shù),若函數(shù)在上有3個零點,則實數(shù)的取值范圍為()A. B. C. D.7.如圖,用一邊長為的正方形硬紙,按各邊中點垂直折起四個小三角形,做成一個蛋巢,將體積為的雞蛋(視為球體)放入其中,蛋巢形狀保持不變,則雞蛋中心(球心)與蛋巢底面的距離為()A. B. C. D.8.已知為定義在上的奇函數(shù),且滿足當時,,則()A. B. C. D.9.已知函數(shù)在區(qū)間有三個零點,,,且,若,則的最小正周期為()A. B. C. D.10.已知實數(shù)滿足則的最大值為()A.2 B. C.1 D.011.若集合,,則下列結論正確的是()A. B. C. D.12.已知在平面直角坐標系中,圓:與圓:交于,兩點,若,則實數(shù)的值為()A.1 B.2 C.-1 D.-2二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),若函數(shù)有6個零點,則實數(shù)的取值范圍是_________.14.已知圓C:經過拋物線E:的焦點,則拋物線E的準線與圓C相交所得弦長是__________.15.某學習小組有名男生和名女生.若從中隨機選出名同學代表該小組參加知識競賽,則選出的名同學中恰好名男生名女生的概率為___________.16.已知均為非負實數(shù),且,則的取值范圍為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在,角、、所對的邊分別為、、,已知.(1)求的值;(2)若,邊上的中線,求的面積.18.(12分)已知點為橢圓上任意一點,直線與圓交于,兩點,點為橢圓的左焦點.(1)求證:直線與橢圓相切;(2)判斷是否為定值,并說明理由.19.(12分)已知函數(shù),其中e為自然對數(shù)的底數(shù).(1)討論函數(shù)的單調性;(2)用表示中較大者,記函數(shù).若函數(shù)在上恰有2個零點,求實數(shù)a的取值范圍.20.(12分)已知橢圓的焦距是,點是橢圓上一動點,點是橢圓上關于原點對稱的兩點(與不同),若直線的斜率之積為.(Ⅰ)求橢圓的標準方程;(Ⅱ)是拋物線上兩點,且處的切線相互垂直,直線與橢圓相交于兩點,求的面積的最大值.21.(12分)已知函數(shù).(1)討論函數(shù)的極值;(2)記關于的方程的兩根分別為,求證:.22.(10分)如圖,在四棱錐中,側棱底面,,,,,是棱中點.(1)已知點在棱上,且平面平面,試確定點的位置并說明理由;(2)設點是線段上的動點,當點在何處時,直線與平面所成角最大?并求最大角的正弦值.

2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【答案解析】

根據拋物線定義得,即可解得結果.【題目詳解】因為,所以.故選B【答案點睛】本題考查拋物線定義,考查基本分析求解能力,屬基礎題.2.B【答案解析】

求出復數(shù),得出其對應點的坐標,確定所在象限.【題目詳解】由題意,對應點坐標為,在第二象限.故選:B.【答案點睛】本題考查復數(shù)的幾何意義,考查復數(shù)的除法運算,屬于基礎題.3.B【答案解析】

求得雙曲線的一條漸近線方程,設出的坐標,由題意求得,運用直線的斜率公式可得,,,再由等差數(shù)列中項性質和離心率公式,計算可得所求值.【題目詳解】設雙曲線的一條漸近線方程為,且,由,可得以為圓心,為半徑的圓與漸近線交于,可得,可取,則,設,,則,,,由,,成等差數(shù)列,可得,化為,即,可得,故選:.【答案點睛】本題考查雙曲線的方程和性質,主要是漸近線方程和離心率,考查方程思想和運算能力,意在考查學生對這些知識的理解掌握水平.4.B【答案解析】

由題知為奇函數(shù),且可得函數(shù)的周期為3,分別求出知函數(shù)在一個周期內的和是0,利用函數(shù)周期性對所求式子進行化簡可得.【題目詳解】因為為奇函數(shù),故;因為,故,可知函數(shù)的周期為3;在中,令,故,故函數(shù)在一個周期內的函數(shù)值和為0,故.故選:B.【答案點睛】本題考查函數(shù)奇偶性與周期性綜合問題.其解題思路:函數(shù)的奇偶性與周期性相結合的問題多考查求值問題,常利用奇偶性及周期性進行變換,將所求函數(shù)值的自變量轉化到已知解析式的函數(shù)定義域內求解.5.B【答案解析】

由圖象的頂點坐標求出,由周期求出,通過圖象經過點,求出,從而得出函數(shù)解析式.【題目詳解】解:由圖象知,,則,圖中的點應對應正弦曲線中的點,所以,解得,故函數(shù)表達式為.故選:B.【答案點睛】本題主要考查三角函數(shù)圖象及性質,三角函數(shù)的解析式等基礎知識;考查考生的化歸與轉化思想,數(shù)形結合思想,屬于基礎題.6.B【答案解析】

根據分段函數(shù),分當,,將問題轉化為的零點問題,用數(shù)形結合的方法研究.【題目詳解】當時,,令,在是增函數(shù),時,有一個零點,當時,,令當時,,在上單調遞增,當時,,在上單調遞減,所以當時,取得最大值,因為在上有3個零點,所以當時,有2個零點,如圖所示:所以實數(shù)的取值范圍為綜上可得實數(shù)的取值范圍為,故選:B【答案點睛】本題主要考查了函數(shù)的零點問題,還考查了數(shù)形結合的思想和轉化問題的能力,屬于中檔題.7.D【答案解析】

先求出球心到四個支點所在球的小圓的距離,再加上側面三角形的高,即可求解.【題目詳解】設四個支點所在球的小圓的圓心為,球心為,由題意,球的體積為,即可得球的半徑為1,又由邊長為的正方形硬紙,可得圓的半徑為,利用球的性質可得,又由到底面的距離即為側面三角形的高,其中高為,所以球心到底面的距離為.故選:D.【答案點睛】本題主要考查了空間幾何體的結構特征,以及球的性質的綜合應用,著重考查了數(shù)形結合思想,以及推理與計算能力,屬于基礎題.8.C【答案解析】

由題設條件,可得函數(shù)的周期是,再結合函數(shù)是奇函數(shù)的性質將轉化為函數(shù)值,即可得到結論.【題目詳解】由題意,,則函數(shù)的周期是,所以,,又函數(shù)為上的奇函數(shù),且當時,,所以,.故選:C.【答案點睛】本題考查函數(shù)的周期性,由題設得函數(shù)的周期是解答本題的關鍵,屬于基礎題.9.C【答案解析】

根據題意,知當時,,由對稱軸的性質可知和,即可求出,即可求出的最小正周期.【題目詳解】解:由于在區(qū)間有三個零點,,,當時,,∴由對稱軸可知,滿足,即.同理,滿足,即,∴,,所以最小正周期為:.故選:C.【答案點睛】本題考查正弦型函數(shù)的最小正周期,涉及函數(shù)的對稱性的應用,考查計算能力.10.B【答案解析】

作出可行域,平移目標直線即可求解.【題目詳解】解:作出可行域:由得,由圖形知,經過點時,其截距最大,此時最大得,當時,故選:B【答案點睛】考查線性規(guī)劃,是基礎題.11.D【答案解析】

由題意,分析即得解【題目詳解】由題意,故,故選:D【答案點睛】本題考查了元素和集合,集合和集合之間的關系,考查了學生概念理解,數(shù)學運算能力,屬于基礎題.12.D【答案解析】

由可得,O在AB的中垂線上,結合圓的性質可知O在兩個圓心的連線上,從而可求.【題目詳解】因為,所以O在AB的中垂線上,即O在兩個圓心的連線上,,,三點共線,所以,得,故選D.【答案點睛】本題主要考查圓的性質應用,幾何性質的轉化是求解的捷徑.二、填空題:本題共4小題,每小題5分,共20分。13.【答案解析】

由題意首先研究函數(shù)的性質,然后結合函數(shù)的性質數(shù)形結合得到關于a的不等式,求解不等式即可確定實數(shù)a的取值范圍.【題目詳解】當時,函數(shù)在區(qū)間上單調遞增,很明顯,且存在唯一的實數(shù)滿足,當時,由對勾函數(shù)的性質可知函數(shù)在區(qū)間上單調遞減,在區(qū)間上單調遞增,結合復合函數(shù)的單調性可知函數(shù)在區(qū)間上單調遞減,在區(qū)間上單調遞增,且當時,,考查函數(shù)在區(qū)間上的性質,由二次函數(shù)的性質可知函數(shù)在區(qū)間上單調遞減,在區(qū)間上單調遞增,函數(shù)有6個零點,即方程有6個根,也就是有6個根,即與有6個不同交點,注意到函數(shù)關于直線對稱,則函數(shù)關于直線對稱,繪制函數(shù)的圖像如圖所示,觀察可得:,即.綜上可得,實數(shù)的取值范圍是.故答案為.【答案點睛】本題主要考查分段函數(shù)的應用,復合函數(shù)的單調性,數(shù)形結合的數(shù)學思想,等價轉化的數(shù)學思想等知識,意在考查學生的轉化能力和計算求解能力.14.【答案解析】

求出拋物線的焦點坐標,代入圓的方程,求出的值,再求出準線方程,利用點到直線的距離公式,求出弦心距,利用勾股定理可以求出弦長的一半,進而求出弦長.【題目詳解】拋物線E:的準線為,焦點為(0,1),把焦點的坐標代入圓的方程中,得,所以圓心的坐標為,半徑為5,則圓心到準線的距離為1,所以弦長.【答案點睛】本題考查了拋物線的準線、圓的弦長公式.15.【答案解析】

從7人中選出2人則總數(shù)有,符合條件數(shù)有,后者除以前者即得結果【題目詳解】從7人中隨機選出2人的總數(shù)有,則記選出的名同學中恰好名男生名女生的概率為事件,∴故答案為:【答案點睛】組合數(shù)與概率的基本運用,熟悉組合數(shù)公式16.【答案解析】

設,可得的取值范圍,分別利用基本不等式和,把用代換,結合的取值范圍求關于的二次函數(shù)的最值即可求解.【題目詳解】因為,,令,則,因為,當且僅當時等號成立,所以,,即,令則函數(shù)的對稱軸為,所以當時函數(shù)有最大值為,即.當且,即,或,時取等號;因為,當且僅當時等號成立,所以,令,則函數(shù)的對稱軸為,所以當時,函數(shù)有最小值為,即,當,且時取等號,所以.故答案為:【答案點睛】本題考查基本不等式與二次函數(shù)求最值相結合求代數(shù)式的取值范圍;考查運算求解能力和知識的綜合運用能力;基本不等式:和的靈活運用是求解本題的關鍵;屬于綜合型、難度大型試題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)答案不唯一,見解析【答案解析】

(1)由題意根據和差角的三角函數(shù)公式可得,再根據同角三角函數(shù)基本關系可得的值;(2)在中,由余弦定理可得,解方程分別由三角形面積公式可得答案.【題目詳解】解:(1)在中,因為,又已知,所以,因為,所以,于是.所以.(2)在中,由余弦定理得,得解得或,當時,的面積,當時,的面積.【答案點睛】本題考查正余弦定理理解三角形,涉及三角形的面積公式和分類討論思想,屬于中檔題.18.(1)證明見解析;(2)是,理由見解析.【答案解析】

(1)根據判別式即可證明.(2)根據向量的數(shù)量積和韋達定理即可證明,需要分類討論,【題目詳解】解:(1)當時直線方程為或,直線與橢圓相切.當時,由得,由題知,,即,所以.故直線與橢圓相切.(2)設,,當時,,,,所以,即.當時,由得,則,,.因為.所以,即.故為定值.【答案點睛】本題考查橢圓的簡單性質,考查向量的運算,注意直線方程和橢圓方程聯(lián)立,運用韋達定理,考查化簡整理的運算能力,屬于中檔題.19.(1)函數(shù)的單調遞增區(qū)間為和,單調遞減區(qū)間為;(2).【答案解析】

(1)由題可得,結合的范圍判斷的正負,即可求解;(2)結合導數(shù)及函數(shù)的零點的判定定理,分類討論進行求解【題目詳解】(1),①當時,,∴函數(shù)在內單調遞增;②當時,令,解得或,當或時,,則單調遞增,當時,,則單調遞減,∴函數(shù)的單調遞增區(qū)間為和,單調遞減區(qū)間為(2)(Ⅰ)當時,所以在上無零點;(Ⅱ)當時,,①若,即,則是的一個零點;②若,即,則不是的零點(Ⅲ)當時,,所以此時只需考慮函數(shù)在上零點的情況,因為,所以①當時,在上單調遞增。又,所以(?。┊敃r,在上無零點;(ⅱ)當時,,又,所以此時在上恰有一個零點;②當時,令,得,由,得;由,得,所以在上單調遞減,在上單調遞增,因為,,所以此時在上恰有一個零點,綜上,【答案點睛】本題考查利用導數(shù)求函數(shù)單調區(qū)間,考查利用導數(shù)處理零點個數(shù)問題,考查運算能力,考查分類討論思想20.(Ⅰ);(Ⅱ)【答案解析】

(Ⅰ)設點的坐標,表達出直線的斜率之積,再根據三點均在橢圓上,根據橢圓的方程代入斜率之積的表達式列式求解即可.(Ⅱ)設直線的方程為,根據直線的斜率之積為可得,再聯(lián)立直線與橢圓的方程,表達出面積公式,再換元利用基本不等式求解即可.【題目詳解】(Ⅰ)設,,則,又,,故,即,故,又,故.故橢圓的標準方程為.(Ⅱ)設直線的方程為,,由,故,又,故,因為處的切線相互垂直故.故直線的方程為.聯(lián)立故.故,代入韋達定理有設,則.當且僅當時取等號.故的面積的最大值為.【答案點睛】本題主要考查了根據橢圓上的點坐標滿足的關系式求解橢圓基本量求方程的方法,同時也考查了拋物線的切線問題以及橢圓中面積的最值問題,需要根據導數(shù)的幾何意義求切線斜率,再換元利用基本不等式求解.屬于難題.21.(1)見解析;(2)見解析【答案解析】

(1)對函數(shù)求導,對參數(shù)討論,得函數(shù)單調區(qū)間,進而求出極值;(2)是方程的兩根,代入方程,化簡換元,構造新函數(shù)利用函數(shù)單調性求最值可解.【題目詳解】(1)依題意,;若,則,則函數(shù)在上單調遞增,此時函數(shù)既無極大值,也無極小值;若,則,令,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論