固體物理英文版課件:Chapter 7 Energy Bands_第1頁(yè)
固體物理英文版課件:Chapter 7 Energy Bands_第2頁(yè)
固體物理英文版課件:Chapter 7 Energy Bands_第3頁(yè)
固體物理英文版課件:Chapter 7 Energy Bands_第4頁(yè)
固體物理英文版課件:Chapter 7 Energy Bands_第5頁(yè)
已閱讀5頁(yè),還剩44頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

Chapter7 EnergyBandsKeypoints:

NearlyFreeelectronmodelEnergybandsBlochtheoremandBlochfunctionsCentralequationEnergybandsnearBrillouinzoneboundaryMetalsandinsulatorsTheproblemsofthefreeelectronFermigasmodel:Thedistinctionbetweenmetals,semiconductors,andinsulatorsPositivevalueofHallcoefficientTherelationofconductionelectronsinmetalstothevalenceelectronsoffreeatomsManytransportpropertiesTounderstandthedifferencebetweeninsulatorsandconductors,wemustextendthefreeelectronmodeltotakeaccountoftheperiodiclatticeofthesolid.Thepossibilityofabandgapisthemostimportantnewpropertythatemerges.MetalSemimetalSemiconductorInsulatorEnergyEnergybandValencebandConductionbandEnergygap(bandgapsorforbiddenband)NearlyfreeelectronmodelOnthefreeelectronFermigasmodel,wehaveThewavefunctionsarewhere,fortheperiodicboundaryconditionsTheenergyThemomentumConsidertheperiodicpotentialsinthelatticeasaperturbation,wehavethe

nearlyfreeelectronmodel.where .絕熱近似:假設(shè)晶體中原子實(shí)是固定不動(dòng),則晶體中的周期勢(shì)場(chǎng)是不隨時(shí)間變化的。單電子近似:忽略價(jià)電子間的相互作用,則價(jià)電子的運(yùn)動(dòng)是相互獨(dú)立的,其波函數(shù)可以用單電子在周期勢(shì)場(chǎng)中的波函數(shù)來(lái)描述。ForanelectronInsidetheBrillouinzone,bytheperturbationtheorywehavewithThenwehaveAttheBrillouinzoneboundary,wehaveThenwehavetheeigenfunctionwithTheSchr?dingerequationisMultiplyandfromleftsiderespectively,withSet

thenWehaveThehomogenouslinearequationshaveasolutiononlyifthedeterminantofthecoefficientsoftheunknownA,Bvanishes.ThereforeTheperiodicpotentialofthelatticecausestheenergygapattheBrillouinzoneboundary.Thelowenergyportionsofthebandstructurein(b)aresimilartofreeelectronsin(a),butwithanenergygapattheBrillouinzoneboundary.DuetotheBraggreflection,attheBrillouinzoneboundary,thewavefunctionsoftheelectronsarenottravelingwaves,butarestandingwavesmadeupofequalpartsofwavestravelingtotherightandtotheleft.Inalinearlatticewiththelatticeconstanta,thestandingwavesare:Braggreflectionofelectronwavesincrystalsisthecauseofenergygaps.TheBraggreflectionisacharacteristicfeatureofwavepropagationincrystals.Thetwostandingwave(+)and()pileupelectronsatdifferentregion.Thereforethesetwowavehavedifferentvaluesofthepotentialenergy.Thisistheoriginoftheenergygap.Forwhichconcentratestheelectronsonthepositiveioncenterswherethepotentialenergyislowest.Forwhichconcentratestheelectronsawayfromthepositiveioncoreswherethepotentialenergyishighest.OriginoftheenergygapMagnitudeoftheenergygapWhenwecalculatetheaveragevalueofthepotentialenergyoverthesethreechargedistributions,wefindthatthepotentialenergyof(+)islowerthanthatofthetravelingwavewhereasthepotentialenergyof()ishigherthanthatofthetravelingwave.ThewidthoftheenergygapEgisthepotentialdifferenceof(+)and().SupposethepotentialenergyofanelectroninthecrystalisThenwehaveThegapisequaltotheFouriercomponentofthecrystalpotential.BlochfunctionsTheBlochtheorem:Theeigenfunctionsofthewaveequationforaperiodicpotentialaretheproductofaplanewavetimesafunctionwiththeperiodicityofthecrystallattice.whereThesolutionsoftheSchr?dingerequationforaperiodicpotentialmustbeofaspecialform:Theone-electronwavefunction iscalledaBlochfunctionandcanbedecomposedintoasumoftravelingwaves.Blochfunctionscanbeassembledintolocalizedwavepacketstorepresentelectronsthatpropagatefreelythroughthepotentialfieldoftheioncores.TheproofoftheBlochtheoreminonedimensionSupposeNidenticallatticepointsofthelatticeconstanta.thepotentialenergyisperiodicina,U(x+sa)=U(x).Theeigenfunctionsofthewaveequationforaperiodicpotentialarek.

Duetothelatticetranslationsymmetry,wehavewhereCisaconstant.Considertheperiodicboundarycondition,ThenThereforewehavewithk=2s/Na.TheproofoftheBlochtheoremDefineatranslationoperationT,where(=1,2,3)istheprimitivetranslationvector.Onecanprove:andThereforeTandHhavesameeigenfunctions.Suppose(r)istheeigenfunctionofTandH.whereEandaretheeigenvaluesofHandTrespectively.Duetotheperiodicboundarycondition:ThenThusSetThenDefineafunction:ThenThereforeThecentralequationConsideralinearlatticewiththelatticeconstanta.ThepotentialenergyU(x)isinvariantunderacrystallatticetranslation.WecanexpandU(x)asaFourierseriesinthereciprocallatticevectorsG.Inone-electronapproximation,theSchr?dingerequationisThewavefunction

(x)canbeexpressesasthesumoverallvaluesoftheplanewavepermittedincrystal,wherek=2n/Lduetotheperiodicboundarycondition.SubstitutethewavefunctionintotheSchr?dingerequation:i.e.Therefore

withthenotationthecentralequationk(x)isthewavepacketwhichisalinearcombinationoftheplanewaveswiththewavecectors

k+G.Inprinciple,thereareaninfinitenumberofCktobedetermined.HoweverinpracticeasmallnumberofCkwillsuffice.ThecentralequationistheSchr?dingerequationexpressedinthereciprocalspace.Herewehaveasetofalgebraicequationsinsteadofthedifferentialequation.RestatementoftheBlochtheoremThewavefunctionisgivenaswherewedefineSupposeTisacrystallatticevector,TG=2s.DiscussionsabouttheBlochtheorem(1)TheBlochfunctiondoesnothavethesameperiodicityasthelattice,i.e.Asprovedbefore,GenerallykisnotareciprocallatticevectorG,ThereforeHoweverHence(2)TheBlochfunctionhasthesameperiodicityasthereciprocallattice:SetG”=G’GFromtheSchr?dingerequation,onehasandTherefore(3)Ifthelatticepotentialvanishes,U(x)=0.Thecentralequationreducesto(k)Ck=0,sothatallCkGarezeroexceptCk,anduk(r)isconstant.Thuswehave(4)ThecrystalmomentumofanelectronThequantitykentersintheconservationlawsthatgoverncollisionprocessesincrystal.ThecrystalmomentumofanelectronIfanelectronabsorbsinacollisionaphononofwavevector,theselectionruleisSolutionofthecentralequationForthepotentialenergythecentralequation representsasetofsimultaneouslinearequations.Theseequationsareconsistentifthedeterminantofthecoefficientsvanishes.Thedeterminantinprincipleisinfiniteinextent,butinpracticeasmallnumberofCkwillsuffice.ThevaluesofthecoefficientsUGforactualcrystalpotentialstendtodecreaserapidlywithincreasingmagnitudeofG.SupposethatthepotentialenergyU(x)containsonlyasingleFouriercomponentUg=Ug=U,wheregdenotestheshortestG.Takefivesuccessiveequationsofthecentralequation.ThenthedeterminantofthecoefficientsisgivenbyForagivenk,thesolutionofthedeterminantgivesasetofenergyeigenvalues

nk,whichlieondifferentbands.Kronig-PenneymodelAssumetheperiodicpotentialisthesquare-wellperiodicpotential.Asshowninthefigure,inoneperiodthesquare-wellpotentialisTheperiodicityofU(x)isa+b.ThewaveequationisIntheregion0<x<a,U(x)=0,theeigenfunctionisalinearcombinationofplanewaveswiththeenergyIntheregionb<x<0,U(x)=U0,theeigenfunctioniswithFromtheBlochtheorem,TheconstantsA,B,C,andDarechosensothatandd/dxarecontinuousatx=0andx=a.Atx=0Atx=aThedeterminantofthecoefficients:IfwerepresentthepotentialbytheperiodicdeltafunctionandsetP=Q2ba/2,InthelimitQ>>KandQb<<1,theequationreducestoNote:Kisnotthewavevector

koftheBlochfunction.Kronig-PenneymodelinreciprocalspaceWeusetheKronig-Penneymodelofaperiodicdeltafunctionpotential:WhereAisaconstantandathelatticespacing.Thesumofsisoverallatomsinaunitlength,whichmeansover1/aatoms.ThusWehavethecentralequation:hereG=2n/a.DefineThenSumbothsideovernThenwehavewherewewriteThenthefinalresultisOtherapproximationsEmptylatticeapproximationActualbandstructuresareusuallyexhibitedasplotsofenergyversuswavevectorinthefirstBrillouinzone.Whenwavevectorshappentobegivenoutsidethefirstzone,theyarecarriedbackintothefirstzonebysubtractingasuitablereciprocallatticevector.Consideranemptylattice,U(r)=0.Theenergiesareapproximatedbythefreeelectronenergies .Howevertheplanewaveismodulatedbythelattice.TheelectronenergyinaemptylatticeiswithkinthefirstBrillouinzoneandGallowedtorunoverappropriatereciprocallatticepoints.e.g.thelow-lyingfreeelectronbansofasimplecubiclatticealong[100]direction.ApproximatesolutionnearazoneboundarySupposeForawavevectorexactlyattheBrillouinzoneboundary,sothatatthezoneboundarythekineticenergyofthetwocomponentwavesk=G/2areequal,i.e.G/2=G/2.SupposeCG/2areimportantcoefficientsatthezoneboundaryandneglectallothers.Thenwehaveonlytwoequationswithk=G/2:HereForanontrivialsolutionwhenceTheradiooftheC:ThenthewavefunctionatthezoneboundaryisHereonesolutiongivesthewavefunctionatthebottomoftheenergygap,andtheothergivesthewavefunctionatthetopoftheenergygap.SolutionsnearthezoneboundaryG/2Withthesametwocomponentapproximation,thewavefunctionis:FromthecentralequationwehaveThedeterminantequalszero:TheenergyIfweexpandtheenergyintermsofaquantity intheregion :AttheBrillouinzoneboundaryThereforeNumberoforbitalsinabandEachprimitivecellcontributionsexactlyoneindependentvalueofktoeachenergyband.Withaccounttakenofthetwoindependentorientationsoftheelectronspin,th

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論