高一數(shù)學(xué)必修1知識(shí)整理_第1頁(yè)
高一數(shù)學(xué)必修1知識(shí)整理_第2頁(yè)
高一數(shù)學(xué)必修1知識(shí)整理_第3頁(yè)
高一數(shù)學(xué)必修1知識(shí)整理_第4頁(yè)
高一數(shù)學(xué)必修1知識(shí)整理_第5頁(yè)
已閱讀5頁(yè),還剩1頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

本文格式為Word版,下載可任意編輯——高一數(shù)學(xué)必修1知識(shí)整理高一新生要作好充分思想打定,以自信、寬容的心態(tài),盡快融入集體,適應(yīng)新同學(xué)、適應(yīng)新校園環(huán)境、適應(yīng)與初中迥異的紀(jì)律制度。下面給大家共享一些關(guān)于(高一數(shù)學(xué))必修1學(xué)識(shí)整理,夢(mèng)想對(duì)大家有所扶助。

高一數(shù)學(xué)必修1學(xué)識(shí)1

(1)直線的傾斜角

定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。更加地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α180°

(2)直線的斜率

①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。

②過(guò)兩點(diǎn)的直線的斜率公式:

留神下面四點(diǎn):

(1)當(dāng)時(shí),公式右邊無(wú)意義,直線的斜率不存在,傾斜角為90°;

(2)k與P1、P2的依次無(wú)關(guān);

(3)以后求斜率可不通過(guò)傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;

(4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。

(3)直線方程

①點(diǎn)斜式:直線斜率k,且過(guò)點(diǎn)

留神:當(dāng)直線的斜率為0°時(shí),k=0,直線的方程是y=y1。當(dāng)直線的斜率為90°時(shí),直線的斜率不存在,它的方程不能用點(diǎn)斜式表示.但因l上每一點(diǎn)的橫坐標(biāo)都等于x1,所以它的方程是x=x1。

②斜截式:,直線斜率為k,直線在y軸上的截距為b

③兩點(diǎn)式:()直線兩點(diǎn),

④截矩式:其中直線與軸交于點(diǎn),與軸交于點(diǎn),即與軸、軸的截距分別為。

⑤一般式:(A,B不全為0)

⑤一般式:(A,B不全為0)

留神:○1各式的適用范圍

○2特殊的方程如:平行于x軸的直線:(b為常數(shù));平行于y軸的直線:(a為常數(shù));

(4)直線系方程:即具有某一共同性質(zhì)的直線

高一數(shù)學(xué)必修1學(xué)識(shí)2

1.等比中項(xiàng)

假設(shè)在a與b中間插入一個(gè)數(shù)G,使a,G,b成等比數(shù)列,那么G叫做a與b的等比中項(xiàng)。

有關(guān)系:

注:兩個(gè)非零同號(hào)的實(shí)數(shù)的等比中項(xiàng)有兩個(gè),它們互為相反數(shù),所以G2=ab是a,G,b三數(shù)成等比數(shù)列的必要不充分條件。

2.等比數(shù)列通項(xiàng)公式

an=a1-q’(n-1)(其中首項(xiàng)是a1,公比是q)

an=Sn-S(n-1)(n≥2)

前n項(xiàng)和

當(dāng)q≠1時(shí),等比數(shù)列的前n項(xiàng)和的公式為

Sn=a1(1-q’n)/(1-q)=(a1-a1-q’n)/(1-q)(q≠1)

當(dāng)q=1時(shí),等比數(shù)列的前n項(xiàng)和的公式為

Sn=na1

3.等比數(shù)列前n項(xiàng)和與通項(xiàng)的關(guān)系

an=a1=s1(n=1)

an=sn-s(n-1)(n≥2)

4.等比數(shù)列性質(zhì)

(1)若m、n、p、q∈N-,且m+n=p+q,那么am·an=ap·aq;

(2)在等比數(shù)列中,依次每k項(xiàng)之和仍成等比數(shù)列。

(3)從等比數(shù)列的定義、通項(xiàng)公式、前n項(xiàng)和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}

(4)等比中項(xiàng):q、r、p成等比數(shù)列,那么aq·ap=ar2,ar那么為ap,aq等比中項(xiàng)。

記πn=a1·a2…an,那么有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

另外,一個(gè)各項(xiàng)均為正數(shù)的等比數(shù)列各項(xiàng)取同底指數(shù)冪后構(gòu)成一個(gè)等差數(shù)列;反之,以任一個(gè)正數(shù)C為底,用一個(gè)等差數(shù)列的各項(xiàng)做指數(shù)構(gòu)造冪Can,那么是等比數(shù)列。在這個(gè)意義下,我們說(shuō):一個(gè)正項(xiàng)等比數(shù)列與等差數(shù)列是“同構(gòu)”的。

(5)等比數(shù)列前n項(xiàng)之和Sn=a1(1-q’n)/(1-q)

(6)任意兩項(xiàng)am,an的關(guān)系為an=am·q’(n-m)

(7)在等比數(shù)列中,首項(xiàng)a1與公比q都不為零。

留神:上述公式中a’n表示a的n次方。

高一數(shù)學(xué)必修1學(xué)識(shí)3

考點(diǎn)一、映射的概念

1.了解對(duì)應(yīng)大千世界的對(duì)應(yīng)共分四類,分別是:一對(duì)一多對(duì)一一對(duì)多多對(duì)多

2.映射:設(shè)A和B是兩個(gè)非空集合,假設(shè)按照某種對(duì)應(yīng)關(guān)系f,對(duì)于集合A中的任意一個(gè)元素x,在集合B中都存在的一個(gè)元素y與之對(duì)應(yīng),那么,就稱對(duì)應(yīng)f:A→B為集合A到集合B的一個(gè)映射(mapping).映射是特殊的對(duì)應(yīng),簡(jiǎn)稱“對(duì)一”的對(duì)應(yīng)。包括:一對(duì)一多對(duì)一

考點(diǎn)二、函數(shù)的概念

1.函數(shù):設(shè)A和B是兩個(gè)非空的數(shù)集,假設(shè)按照某種確定的對(duì)應(yīng)關(guān)系f,對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都存在確定的數(shù)y與之對(duì)應(yīng),那么,就稱對(duì)應(yīng)f:A→B為集合A到集合B的一個(gè)函數(shù)。記作y=f(x),xA.其中x叫自變量,x的取值范圍A叫函數(shù)的定義域;與x的值相對(duì)應(yīng)的y的值函數(shù)值,函數(shù)值的集合叫做函數(shù)的值域。函數(shù)是特殊的映射,是非空數(shù)集A到非空數(shù)集B的映射。

2.函數(shù)的三要素:定義域、值域、對(duì)應(yīng)關(guān)系。這是判斷兩個(gè)函數(shù)是否為同一函數(shù)的依據(jù)。

3.區(qū)間的概念:設(shè)a,bR,且a

①(a,b)={xa

⑤(a,+∞)={-a}⑥[a,+∞)={-≥a}⑦(-∞,b)={-

考點(diǎn)三、函數(shù)的表示(方法)

1.函數(shù)的三種表示方法列表法圖象法解析法

2.分段函數(shù):定義域的不同片面,有不同的對(duì)應(yīng)法那么的函數(shù)。留神兩點(diǎn):①分段函數(shù)是一個(gè)函數(shù),不要誤認(rèn)為是幾個(gè)函數(shù)。②分段函數(shù)的定義域是各段定義域的并集,值域是各段值域的并集。

考點(diǎn)四、求定義域的幾種處境

①若f(x)是整式,那么函數(shù)的定義域是實(shí)數(shù)集R;

②若f(x)是分式,那么函數(shù)的定義域是使分母不等于0的實(shí)數(shù)集;

③若f(x)是二次根式,那么函數(shù)的定義域是使根號(hào)內(nèi)的式子大于或等于0的實(shí)數(shù)集合;

④若f(x)是對(duì)數(shù)函數(shù),真數(shù)應(yīng)大于零。

⑤.由于零的零次冪沒(méi)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論