版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
本文格式為Word版,下載可任意編輯——高中數(shù)學(xué)必修二知識(shí)點(diǎn)總結(jié)數(shù)學(xué)的學(xué)習(xí)離不開根基學(xué)識(shí)點(diǎn)的純熟,所以在復(fù)習(xí)的時(shí)候不單單是做題,還需要把學(xué)識(shí)點(diǎn)都看一遍,我整理了相關(guān)資料,夢(mèng)想能扶助到您。
目次
高中數(shù)學(xué)必修二學(xué)識(shí)點(diǎn)(總結(jié))
高中數(shù)學(xué)必修二學(xué)識(shí)點(diǎn)總結(jié):圓的方程
空間直線與直線之間的位置關(guān)系
高中數(shù)學(xué)必修二學(xué)識(shí)點(diǎn)總結(jié)
1、柱、錐、臺(tái)、球的布局特征
(1)棱柱:
幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形.
(2)棱錐
幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底(面相)似,其好像比等于頂點(diǎn)到截面距離與高的比的平方.
(3)棱臺(tái):
幾何特征:上下底面是好像的平行多邊形側(cè)面是梯形側(cè)棱交于原棱錐的頂點(diǎn)
(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成
幾何特征:底面是全等的圓;母線與軸平行;軸與底面圓的半徑垂直;側(cè)面開展圖是一個(gè)矩形.
(5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成
幾何特征:底面是一個(gè)圓;母線交于圓錐的頂點(diǎn);側(cè)面開展圖是一個(gè)扇形.
(6)圓臺(tái):定義:以直角梯形的垂直與底邊的腰為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成
幾何特征:上下底面是兩個(gè)圓;側(cè)面母線交于原圓錐的頂點(diǎn);側(cè)面開展圖是一個(gè)弓形.
(7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體
幾何特征:球的截面是圓;球面上任意一點(diǎn)到球心的距離等于半徑.
2、空間幾何體的三視圖
定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、
俯視圖(從上向下)
注:正視圖反映了物體的高度和長(zhǎng)度;俯視圖反映了物體的長(zhǎng)度和寬度;側(cè)視圖反映了物體的高度和寬度.
3、空間幾何體的直觀圖——斜二測(cè)畫法
斜二測(cè)畫法特點(diǎn):原來與x軸平行的線段依舊與x平行且長(zhǎng)度不變;
原來與y軸平行的線段依舊與y平行,長(zhǎng)度為原來的一半.
4、柱體、錐體、臺(tái)體的外觀積與體積
(1)幾何體的外觀積為幾何體各個(gè)面的面積的和.
(2)特殊幾何體外觀積公式(c為底面周長(zhǎng),h為高,為斜高,l為母線)
(3)柱體、錐體、臺(tái)體的體積公式
高中數(shù)學(xué)必修二學(xué)識(shí)點(diǎn)總結(jié):直線與方程
(1)直線的傾斜角
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角.更加地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度.因此,傾斜角的取值范圍是0°≤α180°
(2)直線的斜率
定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率.直線的斜率常用k表示.即.斜率反映直線與軸的傾斜程度.
當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),不存在.
過兩點(diǎn)的直線的斜率公式:
留神下面四點(diǎn):(1)當(dāng)時(shí),公式右邊無意義,直線的斜率不存在,傾斜角為90°;
(2)k與P1、P2的依次無關(guān);(3)以后求斜率可不通過傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;
(4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到.
(3)直線方程
點(diǎn)斜式:直線斜率k,且過點(diǎn)
留神:當(dāng)直線的斜率為0°時(shí),k=0,直線的方程是y=y1.
當(dāng)直線的斜率為90°時(shí),直線的斜率不存在,它的方程不能用點(diǎn)斜式表示.但因l上每一點(diǎn)的橫坐標(biāo)都等于x1,所以它的方程是x=x1.
斜截式:,直線斜率為k,直線在y軸上的截距為b
兩點(diǎn)式:()直線兩點(diǎn),
截矩式:
其中直線與軸交于點(diǎn),與軸交于點(diǎn),即與軸、軸的截距分別為.
一般式:(A,B不全為0)
留神:各式的適用范圍特殊的方程如:
(4)平行于x軸的直線:(b為常數(shù));平行于y軸的直線:(a為常數(shù));
(5)直線系方程:即具有某一共同性質(zhì)的直線
(一)平行直線系
平行于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))
(二)垂直直線系
垂直于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))
(三)過定點(diǎn)的直線系
()斜率為k的直線系:,直線過定點(diǎn);
()過兩條直線,的交點(diǎn)的直線系方程為
(為參數(shù)),其中直線不在直線系中.
(6)兩直線平行與垂直
留神:利用斜率判斷直線的平行與垂直時(shí),要留神斜率的存在與否.
(7)兩條直線的交點(diǎn)
相交
交點(diǎn)坐標(biāo)即方程組的一組解.
方程組無解;方程組有多數(shù)解與重合
(8)兩點(diǎn)間距離公式:設(shè)是平面直角坐標(biāo)系中的兩個(gè)點(diǎn)
(9)點(diǎn)到直線距離公式:一點(diǎn)到直線的距離
(10)兩平行直線距離公式
在任一向線上任取一點(diǎn),再轉(zhuǎn)化為點(diǎn)到直線的距離舉行求解.
返回目次
高中數(shù)學(xué)必修二學(xué)識(shí)點(diǎn)總結(jié):圓的方程
1、圓的定義:平面內(nèi)到確定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長(zhǎng)為圓的半徑.
2、圓的方程
(1)標(biāo)準(zhǔn)方程,圓心,半徑為r;
(2)一般方程
當(dāng)時(shí),方程表示圓,此時(shí)圓心為,半徑為
當(dāng)時(shí),表示一個(gè)點(diǎn);當(dāng)時(shí),方程不表示任何圖形.
(3)求圓方程的(方法):
一般都采用待定系數(shù)法:先設(shè)后求.確定一個(gè)圓需要三個(gè)獨(dú)立條件,若利用圓的標(biāo)準(zhǔn)方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要留神多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點(diǎn),以此來確定圓心的位置.
3、高中數(shù)學(xué)必修二學(xué)識(shí)點(diǎn)總結(jié):直線與圓的位置關(guān)系:
直線與圓的位置關(guān)系有相離,相切,相交三種處境:
(1)設(shè)直線,圓,圓心到l的距離為,那么有;;
(2)過圓外一點(diǎn)的切線:k不存在,驗(yàn)證是否成立k存在,設(shè)點(diǎn)斜式方程,用圓心到該直線距離=半徑,求解k,得到方程
(3)過圓上一點(diǎn)的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點(diǎn)為(x0,y0),那么過此點(diǎn)的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2
4、圓與圓的位置關(guān)系:通過兩圓半徑的和(差),與圓心距(d)之間的大小對(duì)比來確定.
設(shè)圓,
兩圓的位置關(guān)系常通過兩圓半徑的和(差),與圓心距(d)之間的大小對(duì)比來確定.
當(dāng)時(shí)兩圓外離,此時(shí)有公切線四條;
當(dāng)時(shí)兩圓外切,連心線過切點(diǎn),有外公切線兩條,內(nèi)公切線一條;
當(dāng)時(shí)兩圓相交,連心線垂直平分公共弦,有兩條外公切線;
當(dāng)時(shí),兩圓內(nèi)切,連心線經(jīng)過切點(diǎn),只有一條公切線;
當(dāng)時(shí),兩圓內(nèi)含;當(dāng)時(shí),為同心圓.
留神:已知圓上兩點(diǎn),圓心必在中垂線上;已知兩圓相切,兩圓心與切點(diǎn)共線
5、空間點(diǎn)、直線、平面的位置關(guān)系
公理1:假設(shè)一條直線的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線是全體的點(diǎn)都在這個(gè)平面內(nèi).
應(yīng)用:判斷直線是否在平面內(nèi)
用符號(hào)語言表示公理1:
公理2:假設(shè)兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過該點(diǎn)的公共直線
符號(hào):平面α和β相交,交線是a,記作α∩β=a.
符號(hào)語言:
公理2的作用:
它是判定兩個(gè)平面相交的方法.
它說明兩個(gè)平面的交線與兩個(gè)平面公共點(diǎn)之間的關(guān)系:交線必過公共點(diǎn).
它可以判斷點(diǎn)在直線上,即證若干個(gè)點(diǎn)共線的重要依據(jù).
公理3:經(jīng)過不在同一條直線上的三點(diǎn),有且只有一個(gè)平面.
推論:一向線和直線外一點(diǎn)確定一平面;兩相交直線確定一平面;兩平行直線確定一平面.
公理3及其推論作用:它是空間內(nèi)確定平面的依據(jù)它是證明平面重合的依據(jù)
公理4:平行于同一條直線的兩條直線彼此平行
返回目次
必修二學(xué)識(shí)點(diǎn)總結(jié):空間直線與直線之間的位置關(guān)系
異面直線定義:不同在任何一個(gè)平面內(nèi)的兩條直線
異面直線性質(zhì):既不平行,又不相交.
異面直線判定:過平面外一點(diǎn)與平面內(nèi)一點(diǎn)的直線與平面內(nèi)不過該店的直線是異面直線
異面直線所成角:作平行,令兩線相交,所得銳角或直角,即所成角.兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線彼此垂直.
求異面直線所成角步驟:
A、利用定義構(gòu)造角,可固定一條,平移另一條,或兩條同時(shí)平移到某個(gè)特殊的位置,頂點(diǎn)選在特殊的位置上.B、證明作出的角即為所求角C、利用三角形來求角
(7)等角定理:假設(shè)一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行,那么這兩角相等或互補(bǔ).
(8)空間直線與平面之間的位置關(guān)系
直線在平面內(nèi)——有多數(shù)個(gè)公共點(diǎn).
三種位置關(guān)系的符號(hào)表示:aαa∩α=Aaα
(9)平面與平面之間的位置關(guān)系:平行——沒有公共點(diǎn);αβ
相交——有一條公共直線.α∩β=b
2、空間中的平行問題
(1)直線與平面平行的判定及其性質(zhì)
線面平行的判定定理:平面外一條直線與此平面內(nèi)一條直線平行,那么該直線與此平面平行.
線線平行線面平行
線面平行的性質(zhì)定理:假設(shè)一條直線和一個(gè)平面平行,經(jīng)過這條直線的平面和這個(gè)平面相交,
那么這條直線和交線平行.線面平行線線平行
(2)平面與平面平行的判定及其性質(zhì)
兩個(gè)平面平行的判定定理
(1)假設(shè)一個(gè)平面內(nèi)的兩條相交直線都平行于另一個(gè)平面,那么這兩個(gè)平面平行
(線面平行→面面平行),
(2)假設(shè)在兩個(gè)平面內(nèi),各有兩組相交直線對(duì)應(yīng)平行,那么這兩個(gè)平面平行.
(線線平行→面面平行),
(3)垂直于同一條直線的兩個(gè)平面平行,
兩個(gè)平面平行的性質(zhì)定理
(1)假設(shè)兩個(gè)平面平行,那么某一個(gè)平面內(nèi)的直線與另一個(gè)平面平行.(面面平行→線面平行)
(2)假設(shè)兩個(gè)平行平面都和第三個(gè)平面相交,那么它們的交線平行.(面面平行→線線平行)
3、空間中的垂直問題
(1)線線、面面、線面垂直的定義
兩條異面直線的垂直:假設(shè)兩條異面直線所成的角是直角,就說這兩條異面直線彼此垂直.
線面垂直:假設(shè)一條直線和一個(gè)平面內(nèi)的任何一條直線垂直,就說這條直線和這個(gè)平面垂直.
平面和平面垂直:假設(shè)兩個(gè)平面相交,所成的二面角(從一條直線啟程的兩個(gè)半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個(gè)平面垂直.
(2)垂直關(guān)系的判定和性質(zhì)定理
線面垂直判定定理和性質(zhì)定理
判定定理:假設(shè)一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個(gè)平面.
性質(zhì)定理:假設(shè)兩條直線同垂直于一個(gè)平面,那么這兩條直線平行.
面面垂直的判定定理和性質(zhì)定理
判定定理:假設(shè)一個(gè)平面經(jīng)過另一個(gè)平面的一條垂線,那么這兩個(gè)平面彼此垂直.
性質(zhì)定理:假設(shè)兩個(gè)平面彼此垂直,那么在一個(gè)平面內(nèi)垂直于他們的交線的直線垂直于另一個(gè)平面.
4、空間角問題
(1)直線與直線所成的角
兩平行直線所成的角:規(guī)定為.
兩條相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角.
兩條異面直線所成的角:過空間任意一點(diǎn)O,分別作與兩條異面直線a,b平行的直線,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角.
(2)直線和平面所成的角
平面的平行線與平面所成的角:規(guī)定為.平面的垂線與平面所成的角:規(guī)定為.
平面的斜線與平面所成的角:平面的一條斜線和它在平面內(nèi)的射影所成的銳角,叫做這條直線和這個(gè)平面所成的角.
求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計(jì)算”.
在“作角”時(shí)依定義關(guān)鍵作射影,由射影定義知關(guān)鍵在于斜線上一點(diǎn)到面的垂線,
在解題時(shí),留神挖掘題設(shè)中兩個(gè)主要信息:(1)斜線上一點(diǎn)到面的垂線;(2)過斜線上的一點(diǎn)或過斜線的平面與已知面垂直,由面面垂直性質(zhì)易得垂線.
(3)二面角和二面角的平面角
二面角的定義:從一條直線啟程的兩個(gè)半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個(gè)半平面叫做二面角的面.
二面角的平面角:以二面角的棱上任意一點(diǎn)為頂點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角.
直二面角:平面角是直角的二面角叫直二面角.
兩相交平面假設(shè)所組成的二面角是直二面角,那么這兩個(gè)平面垂直;反過來,假設(shè)兩個(gè)平面垂直,那么所成的二面角為直二面角
求二面角的方法
定義法:在棱上選擇有關(guān)點(diǎn),過這個(gè)點(diǎn)分別在兩個(gè)面內(nèi)作垂直于棱的射線得到平面角
垂面法:已知二面角內(nèi)一點(diǎn)到兩個(gè)面的垂線時(shí),過兩垂線作平面與兩個(gè)面的交線所成的角為二面角的平面角
必修二學(xué)識(shí)點(diǎn)總結(jié):解三角形
(1)正弦定理和余弦定理
掌管正弦定理、余弦定理,并能解決一些簡(jiǎn)樸的三角形度量問題.
(2)應(yīng)用
能夠運(yùn)用正弦定理、余弦定理等學(xué)識(shí)和方法解決一些與測(cè)量和幾何計(jì)算有關(guān)的實(shí)際問題.
高中數(shù)學(xué)必修二學(xué)識(shí)點(diǎn)總結(jié):數(shù)列
(1)數(shù)列的概念和簡(jiǎn)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 文化活動(dòng)策劃方案范文
- 現(xiàn)代企業(yè)如何依賴云平臺(tái)優(yōu)化數(shù)據(jù)審核流程
- 游戲類直播平臺(tái)的用戶行為分析與優(yōu)化策略研究
- 現(xiàn)代舞臺(tái)背景屏技術(shù)革新與發(fā)展
- 環(huán)保材料在辦公環(huán)境建設(shè)中的應(yīng)用
- 生產(chǎn)過程中的危機(jī)應(yīng)對(duì)與風(fēng)險(xiǎn)化解
- 未來十年電動(dòng)汽車市場(chǎng)預(yù)測(cè)與展望
- 生態(tài)系統(tǒng)服務(wù)在商業(yè)地產(chǎn)開發(fā)中的應(yīng)用
- 現(xiàn)代網(wǎng)絡(luò)技術(shù)企業(yè)管理的重要支撐
- 18《書湖陰先生壁》說課稿-2024-2025學(xué)年統(tǒng)編版語文六年級(jí)上冊(cè)
- (正式版)HGT 22820-2024 化工安全儀表系統(tǒng)工程設(shè)計(jì)規(guī)范
- 養(yǎng)老護(hù)理員培訓(xùn)老年人日常生活照料
- 黑龍江省哈爾濱市八年級(jí)(下)期末化學(xué)試卷
- 各種抽油泵的結(jié)構(gòu)及工作原理幻燈片
- 學(xué)習(xí)弘揚(yáng)雷鋒精神主題班會(huì)PPT雷鋒精神我傳承爭(zhēng)當(dāng)時(shí)代好少年P(guān)PT課件(帶內(nèi)容)
- 社區(qū)獲得性肺炎的護(hù)理查房
- 體育賽事策劃與管理第八章體育賽事的利益相關(guān)者管理課件
- 專題7閱讀理解之文化藝術(shù)類-備戰(zhàn)205高考英語6年真題分項(xiàng)版精解精析原卷
- 《生物資源評(píng)估》剩余產(chǎn)量模型
- 2022年廣東省10月自考藝術(shù)概論00504試題及答案
- 隧道二襯承包合同參考
評(píng)論
0/150
提交評(píng)論