版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023高考數(shù)學(xué)模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若的展開式中的系數(shù)之和為,則實數(shù)的值為()A. B. C. D.12.函數(shù)的大致圖象為A. B.C. D.3.等比數(shù)列若則()A.±6 B.6 C.-6 D.4.已知雙曲線的焦距是虛軸長的2倍,則雙曲線的漸近線方程為()A. B. C. D.5.已知集合,,若,則的最小值為()A.1 B.2 C.3 D.46.設(shè)集合,,若,則()A. B. C. D.7.若函數(shù)的圖象向右平移個單位長度得到函數(shù)的圖象,若函數(shù)在區(qū)間上單調(diào)遞增,則的最大值為().A. B. C. D.8.記遞增數(shù)列的前項和為.若,,且對中的任意兩項與(),其和,或其積,或其商仍是該數(shù)列中的項,則()A. B.C. D.9.某三棱錐的三視圖如圖所示,則該三棱錐的體積為A. B. C.2 D.10.已知與之間的一組數(shù)據(jù):12343.24.87.5若關(guān)于的線性回歸方程為,則的值為()A.1.5 B.2.5 C.3.5 D.4.511.雙曲線x26-y23=1的漸近線與圓(x-3)2+y2=A.3 B.2C.3 D.612.設(shè)a=log73,,c=30.7,則a,b,c的大小關(guān)系是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知多項式的各項系數(shù)之和為32,則展開式中含項的系數(shù)為______.14.已知函數(shù),若函數(shù)恰有4個零點,則實數(shù)的取值范圍是________.15.已知變量(m>0),且,若恒成立,則m的最大值________.16.已知函數(shù)若關(guān)于的不等式的解集是,則的值為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).當(dāng)時,求不等式的解集;,,求a的取值范圍.18.(12分)已知函數(shù),且曲線在處的切線方程為.(1)求的極值點與極值.(2)當(dāng),時,證明:.19.(12分)設(shè)函數(shù)().(1)討論函數(shù)的單調(diào)性;(2)若關(guān)于x的方程有唯一的實數(shù)解,求a的取值范圍.20.(12分)如圖,在三棱錐A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,點E,F(xiàn)(E與A,D不重合)分別在棱AD,BD上,且EF⊥AD.求證:(1)EF∥平面ABC;(2)AD⊥AC.21.(12分)已知函數(shù).(1)當(dāng)時,判斷在上的單調(diào)性并加以證明;(2)若,,求的取值范圍.22.(10分)已知橢圓的離心率為,直線過橢圓的右焦點,過的直線交橢圓于兩點(均異于左、右頂點).(1)求橢圓的方程;(2)已知直線,為橢圓的右頂點.若直線交于點,直線交于點,試判斷是否為定值,若是,求出定值;若不是,說明理由.
2023學(xué)年模擬測試卷參考答案(含詳細(xì)解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【答案解析】
由,進(jìn)而分別求出展開式中的系數(shù)及展開式中的系數(shù),令二者之和等于,可求出實數(shù)的值.【題目詳解】由,則展開式中的系數(shù)為,展開式中的系數(shù)為,二者的系數(shù)之和為,得.故選:B.【答案點睛】本題考查二項式定理的應(yīng)用,考查學(xué)生的計算求解能力,屬于基礎(chǔ)題.2.A【答案解析】
因為,所以函數(shù)是偶函數(shù),排除B、D,又,排除C,故選A.3.B【答案解析】
根據(jù)等比中項性質(zhì)代入可得解,由等比數(shù)列項的性質(zhì)確定值即可.【題目詳解】由等比數(shù)列中等比中項性質(zhì)可知,,所以,而由等比數(shù)列性質(zhì)可知奇數(shù)項符號相同,所以,故選:B.【答案點睛】本題考查了等比數(shù)列中等比中項的簡單應(yīng)用,注意項的符號特征,屬于基礎(chǔ)題.4.A【答案解析】
根據(jù)雙曲線的焦距是虛軸長的2倍,可得出,結(jié)合,得出,即可求出雙曲線的漸近線方程.【題目詳解】解:由雙曲線可知,焦點在軸上,則雙曲線的漸近線方程為:,由于焦距是虛軸長的2倍,可得:,∴,即:,,所以雙曲線的漸近線方程為:.故選:A.【答案點睛】本題考查雙曲線的簡單幾何性質(zhì),以及雙曲線的漸近線方程.5.B【答案解析】
解出,分別代入選項中的值進(jìn)行驗證.【題目詳解】解:,.當(dāng)時,,此時不成立.當(dāng)時,,此時成立,符合題意.故選:B.【答案點睛】本題考查了不等式的解法,考查了集合的關(guān)系.6.A【答案解析】
根據(jù)交集的結(jié)果可得是集合的元素,代入方程后可求的值,從而可求.【題目詳解】依題意可知是集合的元素,即,解得,由,解得.【答案點睛】本題考查集合的交,注意根據(jù)交集的結(jié)果確定集合中含有的元素,本題屬于基礎(chǔ)題.7.C【答案解析】
由題意利用函數(shù)的圖象變換規(guī)律,正弦函數(shù)的單調(diào)性,求出的最大值.【題目詳解】解:把函數(shù)的圖象向右平移個單位長度得到函數(shù)的圖象,若函數(shù)在區(qū)間,上單調(diào)遞增,在區(qū)間,上,,,則當(dāng)最大時,,求得,故選:C.【答案點睛】本題主要考查函數(shù)的圖象變換規(guī)律,正弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.8.D【答案解析】
由題意可得,從而得到,再由就可以得出其它各項的值,進(jìn)而判斷出的范圍.【題目詳解】解:,或其積,或其商仍是該數(shù)列中的項,或者或者是該數(shù)列中的項,又?jǐn)?shù)列是遞增數(shù)列,,,,只有是該數(shù)列中的項,同理可以得到,,,也是該數(shù)列中的項,且有,,或(舍,,根據(jù),,,同理易得,,,,,,,故選:D.【答案點睛】本題考查數(shù)列的新定義的理解和運(yùn)用,以及運(yùn)算能力和推理能力,屬于中檔題.9.A【答案解析】由給定的三視圖可知,該幾何體表示一個底面為一個直角三角形,且兩直角邊分別為和,所以底面面積為高為的三棱錐,所以三棱錐的體積為,故選A.10.D【答案解析】
利用表格中的數(shù)據(jù),可求解得到代入回歸方程,可得,再結(jié)合表格數(shù)據(jù),即得解.【題目詳解】利用表格中數(shù)據(jù),可得又,.解得故選:D【答案點睛】本題考查了線性回歸方程過樣本中心點的性質(zhì),考查了學(xué)生概念理解,數(shù)據(jù)處理,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.11.A【答案解析】
由圓心到漸近線的距離等于半徑列方程求解即可.【題目詳解】雙曲線的漸近線方程為y=±22x,圓心坐標(biāo)為(3,0).由題意知,圓心到漸近線的距離等于圓的半徑r,即r=±答案:A【答案點睛】本題考查了雙曲線的漸近線方程及直線與圓的位置關(guān)系,屬于基礎(chǔ)題.12.D【答案解析】
,,得解.【題目詳解】,,,所以,故選D【答案點睛】比較不同數(shù)的大小,找中間量作比較是一種常見的方法.二、填空題:本題共4小題,每小題5分,共20分。13.【答案解析】
令可得各項系數(shù)和為,得出,根據(jù)第一個因式展開式的常數(shù)項與第二個因式的展開式含一次項的積與第一個因式展開式含x的一次項與第二個因式常數(shù)項的積的和即為展開式中含項,可得解.【題目詳解】令,則得,解得,所以展開式中含項為:,故答案為:【答案點睛】本題主要考查了二項展開式的系數(shù)和,二項展開式特定項,賦值法,屬于中檔題.14.【答案解析】
函數(shù)恰有4個零點,等價于函數(shù)與函數(shù)的圖象有四個不同的交點,畫出函數(shù)圖象,利用數(shù)形結(jié)合思想進(jìn)行求解即可.【題目詳解】函數(shù)恰有4個零點,等價于函數(shù)與函數(shù)的圖象有四個不同的交點,畫出函數(shù)圖象如下圖所示:由圖象可知:實數(shù)的取值范圍是.故答案為:【答案點睛】本題考查了已知函數(shù)零點個數(shù)求參數(shù)取值范圍問題,考查了數(shù)形結(jié)合思想和轉(zhuǎn)化思想.15.【答案解析】
在不等式兩邊同時取對數(shù),然后構(gòu)造函數(shù)f(x)=,求函數(shù)的導(dǎo)數(shù),研究函數(shù)的單調(diào)性即可得到結(jié)論.【題目詳解】不等式兩邊同時取對數(shù)得,即x2lnx1<x1lnx2,又即成立,設(shè)f(x)=,x∈(0,m),∵x1<x2,f(x1)<f(x2),則函數(shù)f(x)在(0,m)上為增函數(shù),函數(shù)的導(dǎo)數(shù),由f′(x)>0得1﹣lnx>0得lnx<1,得0<x<e,即函數(shù)f(x)的最大增區(qū)間為(0,e),則m的最大值為e故答案為:e【答案點睛】本題考查函數(shù)單調(diào)性與導(dǎo)數(shù)之間的應(yīng)用,根據(jù)條件利用取對數(shù)得到不等式,從而可構(gòu)造新函數(shù),是解決本題的關(guān)鍵16.【答案解析】
根據(jù)題意可知的兩根為,再根據(jù)解集的區(qū)間端點得出參數(shù)的關(guān)系,再求解即可.【題目詳解】解:因為函數(shù),關(guān)于的不等式的解集是的兩根為:和;所以有:且;且;;故答案為:【答案點睛】本題主要考查了不等式的解集與參數(shù)之間的關(guān)系,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2).【答案解析】
(1)當(dāng)時,,①當(dāng)時,,令,即,解得,②當(dāng)時,,顯然成立,所以,③當(dāng)時,,令,即,解得,綜上所述,不等式的解集為.(2)因為,因為,有成立,所以只需,解得,所以a的取值范圍為.【答案點睛】絕對值不等式的解法:法一:利用絕對值不等式的幾何意義求解,體現(xiàn)了數(shù)形結(jié)合的思想;法二:利用“零點分段法”求解,體現(xiàn)了分類討論的思想;法三:通過構(gòu)造函數(shù),利用函數(shù)的圖象求解,體現(xiàn)了函數(shù)與方程的思想.18.(1)極小值點為,極小值為,無極大值;(2)證明見解析【答案解析】
先對函數(shù)求導(dǎo),結(jié)合已知及導(dǎo)數(shù)的幾何意義可求,結(jié)合單調(diào)性即可求解函數(shù)的極值點及極值;令,問題可轉(zhuǎn)化為求解函數(shù)的最值,結(jié)合導(dǎo)數(shù)可求.【題目詳解】(1)由題得函數(shù)的定義域為.,由已知得,解得∴,令,得令,得,∴在上單調(diào)遞增.令,得∴在上單調(diào)遞減∴的極小值點為,極小值為,無極大值.(2)證明:由(1)知,∴,令,即∵,,∴恒成立.∴在上單調(diào)遞增又,∴在上恒成立∴在上恒成立∴,即∴【答案點睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的極值問題,考查利用導(dǎo)數(shù)證明不等式,意在考查學(xué)生對這些知識的理解掌握水平,屬于中檔題.19.(1)當(dāng)時,遞增區(qū)間時,無遞減區(qū)間,當(dāng)時,遞增區(qū)間時,遞減區(qū)間時;(2)或.【答案解析】
(1)求出,對分類討論,先考慮(或)恒成立的范圍,并以此作為的分類標(biāo)準(zhǔn),若不恒成立,求解,即可得出結(jié)論;(2)有解,即,令,轉(zhuǎn)化求函數(shù)只有一個實數(shù)解,根據(jù)(1)中的結(jié)論,即可求解.【題目詳解】(1),當(dāng)時,恒成立,當(dāng)時,,綜上,當(dāng)時,遞增區(qū)間時,無遞減區(qū)間,當(dāng)時,遞增區(qū)間時,遞減區(qū)間時;(2),令,原方程只有一個解,只需只有一個解,即求只有一個零點時,的取值范圍,由(1)得當(dāng)時,在單調(diào)遞增,且,函數(shù)只有一個零點,原方程只有一個解,當(dāng)時,由(1)得在出取得極小值,也是最小值,當(dāng)時,,此時函數(shù)只有一個零點,原方程只有一個解,當(dāng)且遞增區(qū)間時,遞減區(qū)間時;,當(dāng),有兩個零點,即原方程有兩個解,不合題意,所以的取值范圍是或.【答案點睛】本題考查導(dǎo)數(shù)的綜合應(yīng)用,涉及到單調(diào)性、零點、極值最值,考查分類討論和等價轉(zhuǎn)化思想,屬于中檔題.20.(1)見解析(2)見解析【答案解析】試題分析:(1)先由平面幾何知識證明,再由線面平行判定定理得結(jié)論;(2)先由面面垂直性質(zhì)定理得平面,則,再由AB⊥AD及線面垂直判定定理得AD⊥平面ABC,即可得AD⊥AC.試題解析:證明:(1)在平面內(nèi),因為AB⊥AD,,所以.又因為平面ABC,平面ABC,所以EF∥平面ABC.(2)因為平面ABD⊥平面BCD,平面平面BCD=BD,平面BCD,,所以平面.因為平面,所以.又AB⊥AD,,平面ABC,平面ABC,所以AD⊥平面ABC,又因為AC平面ABC,所以AD⊥AC.點睛:垂直、平行關(guān)系證明中應(yīng)用轉(zhuǎn)化與化歸思想的常見類型:(1)證明線面、面面平行,需轉(zhuǎn)化為證明線線平行;(2)證明線面垂直,需轉(zhuǎn)化為證明線線垂直;(3)證明線線垂直,需轉(zhuǎn)化為證明線面垂直.21.(1)在為增函數(shù);證明見解析(2)【答案解析】
(1)令,求出,可推得,故在為增函數(shù);(2)令,則,由此利用分類討論思想和導(dǎo)數(shù)性質(zhì)求出實數(shù)的取值范圍.【題目詳解】(1)當(dāng)時,.記,則,當(dāng)時,,.所以,所以在單調(diào)遞增,所以.因為,所以,所以在為增函數(shù).(2)由題意,得,記,則,令,則,當(dāng)時,,,所以,所以在為增函數(shù),即在單調(diào)遞增,所以.①當(dāng),,恒成立,所以為增函數(shù),即在單調(diào)遞增,又,所以,所以在為增函數(shù),所以所以滿足題意.②當(dāng),,令,,因為,所以,故在單調(diào)遞增,故,即.故,又在單調(diào)遞增,由零點存在性定理知,存在唯一實數(shù),,當(dāng)時,,單調(diào)遞減,即單調(diào)遞減,所以,此時在為減函數(shù),所以,不合題意,應(yīng)舍去.綜上所述,的取值范圍是.【答案點睛】本題主要考
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度2025版木材行業(yè)標(biāo)準(zhǔn)制定合作合同2篇
- 福建省泉州市南安市2024-2025學(xué)年八年級上學(xué)期期末英語試題(無答案)
- 創(chuàng)新創(chuàng)業(yè)-職業(yè)核心能力課件
- 絲印精加工在微型電子設(shè)備制造領(lǐng)域的應(yīng)用考核試卷
- 二零二五年度墓地陵園土地租賃與使用權(quán)轉(zhuǎn)讓合同4篇
- 母嬰行業(yè)2025年度母嬰用品環(huán)保認(rèn)證服務(wù)合同2篇
- 二零二五版鋼材貨物流動銀行托管運(yùn)輸合同3篇
- 二零二五年度木制品生產(chǎn)與銷售承包合同3篇
- 2025年公司內(nèi)部競業(yè)保密協(xié)議
- 2025年太陽能光伏電站智能監(jiān)控工程施工合同
- 2024年高純氮化鋁粉體項目可行性分析報告
- 安檢人員培訓(xùn)
- 危險性較大分部分項工程及施工現(xiàn)場易發(fā)生重大事故的部位、環(huán)節(jié)的預(yù)防監(jiān)控措施
- 《榜樣9》觀后感心得體會四
- 2023事業(yè)單位筆試《公共基礎(chǔ)知識》備考題庫(含答案)
- 化學(xué)-廣東省廣州市2024-2025學(xué)年高一上學(xué)期期末檢測卷(一)試題和答案
- 2025四川中煙招聘高頻重點提升(共500題)附帶答案詳解
- EHS工程師招聘筆試題與參考答案(某大型央企)2024年
- 營銷策劃 -麗亭酒店品牌年度傳播規(guī)劃方案
- 2025年中國蛋糕行業(yè)市場規(guī)模及發(fā)展前景研究報告(智研咨詢發(fā)布)
- 護(hù)理組長年底述職報告
評論
0/150
提交評論