山東省昌樂縣2023年中考數(shù)學(xué)猜題卷含答案解析_第1頁(yè)
山東省昌樂縣2023年中考數(shù)學(xué)猜題卷含答案解析_第2頁(yè)
山東省昌樂縣2023年中考數(shù)學(xué)猜題卷含答案解析_第3頁(yè)
已閱讀5頁(yè),還剩19頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

山東省昌樂縣2023年中考數(shù)學(xué)猜題卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,已知直線l1:y=﹣2x+4與直線l2:y=kx+b(k≠0)在第一象限交于點(diǎn)M.若直線l2與x軸的交點(diǎn)為A(﹣2,0),則k的取值范圍是()A.﹣2<k<2 B.﹣2<k<0 C.0<k<4 D.0<k<22.如圖的幾何體是由一個(gè)正方體切去一個(gè)小正方體形成的,它的主視圖是()A. B. C. D.3.如圖,正方形ABCD中,AB=6,G是BC的中點(diǎn).將△ABG沿AG對(duì)折至△AFG,延長(zhǎng)GF交DC于點(diǎn)E,則DE的長(zhǎng)是()A.1 B.1.5 C.2 D.2.54.如圖1是一座立交橋的示意圖(道路寬度忽略不計(jì)),A為人口,F(xiàn),G為出口,其中直行道為AB,CG,EF,且AB=CG=EF;彎道為以點(diǎn)O為圓心的一段弧,且,,所對(duì)的圓心角均為90°.甲、乙兩車由A口同時(shí)駛?cè)肓⒔粯?,均?0m/s的速度行駛,從不同出口駛出,其間兩車到點(diǎn)O的距離y(m)與時(shí)間x(s)的對(duì)應(yīng)關(guān)系如圖2所示.結(jié)合題目信息,下列說法錯(cuò)誤的是()A.甲車在立交橋上共行駛8s B.從F口出比從G口出多行駛40m C.甲車從F口出,乙車從G口出 D.立交橋總長(zhǎng)為150m5.如圖,在正方形ABCD中,AB=,P為對(duì)角線AC上的動(dòng)點(diǎn),PQ⊥AC交折線A﹣D﹣C于點(diǎn)Q,設(shè)AP=x,△APQ的面積為y,則y與x的函數(shù)圖象正確的是()A. B.C. D.6.如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半徑為2,圓心角為60°,則圖中陰影部分的面積是()A. B. C. D.7.若x=-2是關(guān)于x的一元二次方程x2+ax-a2=0的一個(gè)根,則a的值為()A.-1或4 B.-1或-4C.1或-4 D.1或48.下列事件是確定事件的是()A.陰天一定會(huì)下雨B.黑暗中從5把不同的鑰匙中隨意摸出一把,用它打開了門C.打開電視機(jī),任選一個(gè)頻道,屏幕上正在播放新聞聯(lián)播D.在五個(gè)抽屜中任意放入6本書,則至少有一個(gè)抽屜里有兩本書9.為了大力宣傳節(jié)約用電,某小區(qū)隨機(jī)抽查了10戶家庭的月用電量情況,統(tǒng)計(jì)如下表,關(guān)于這10戶家庭的月用電量說法正確的是()月用電量(度)2530405060戶數(shù)12421A.極差是3 B.眾數(shù)是4 C.中位數(shù)40 D.平均數(shù)是20.510.實(shí)數(shù)a,b,c在數(shù)軸上對(duì)應(yīng)點(diǎn)的位置如圖所示,則下列結(jié)論中正確的是()A.a(chǎn)+c>0 B.b+c>0 C.a(chǎn)c>bc D.a(chǎn)﹣c>b﹣c二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.分解因式:=__________________.12.如圖,在平面直角坐標(biāo)系中,直線y=﹣3x+3與x軸、y軸分別交于A、B兩點(diǎn),以AB為邊在第一象限作正方形,點(diǎn)D恰好在雙曲線上,則k值為_____.13.每年農(nóng)歷五月初五為端午節(jié),中國(guó)民間歷來有端午節(jié)吃粽子、賽龍舟的習(xí)俗.某班同學(xué)為了更好地了解某社區(qū)居民對(duì)鮮肉粽(A)豆沙粽(B)小棗粽(C)蛋黃粽(D)的喜愛情況,對(duì)該社區(qū)居民進(jìn)行了隨機(jī)抽樣調(diào)查,并將調(diào)查情況繪制成如下兩幅統(tǒng)計(jì)圖(尚不完整).分析圖中信息,本次抽樣調(diào)查中喜愛小棗粽的人數(shù)為________;若該社區(qū)有10000人,估計(jì)愛吃鮮肉粽的人數(shù)約為________.14.在△ABC中,AB=AC,把△ABC折疊,使點(diǎn)B與點(diǎn)A重合,折痕交AB于點(diǎn)M,交BC于點(diǎn)N.如果△CAN是等腰三角形,則∠B的度數(shù)為___________.15.關(guān)于的一元二次方程有兩個(gè)相等的實(shí)數(shù)根,則________.16.如圖,AB是⊙O的切線,B為切點(diǎn),AC經(jīng)過點(diǎn)O,與⊙O分別相交于點(diǎn)D,C,若∠ACB=30°,AB=,則陰影部分的面積是___.三、解答題(共8題,共72分)17.(8分)某中學(xué)九(1)班為了了解全班學(xué)生喜歡球類活動(dòng)的情況,采取全面調(diào)查的方法,從足球、乒乓球、籃球、排球等四個(gè)方面調(diào)查了全班學(xué)生的興趣愛好,根據(jù)調(diào)查的結(jié)果組建了4個(gè)興趣小組,并繪制成如圖所示的兩幅不完整的統(tǒng)計(jì)圖(如圖①,②,要求每位學(xué)生只能選擇一種自己喜歡的球類),請(qǐng)你根據(jù)圖中提供的信息解答下列問題:(1)九(1)班的學(xué)生人數(shù)為,并把條形統(tǒng)計(jì)圖補(bǔ)充完整;(2)扇形統(tǒng)計(jì)圖中m=,n=,表示“足球”的扇形的圓心角是度;(3)排球興趣小組4名學(xué)生中有3男1女,現(xiàn)在打算從中隨機(jī)選出2名學(xué)生參加學(xué)校的排球隊(duì),請(qǐng)用列表或畫樹狀圖的方法求選出的2名學(xué)生恰好是1男1女的概率.18.(8分)(2017江蘇省常州市)為了解某校學(xué)生的課余興趣愛好情況,某調(diào)查小組設(shè)計(jì)了“閱讀”、“打球”、“書法”和“其他”四個(gè)選項(xiàng),用隨機(jī)抽樣的方法調(diào)查了該校部分學(xué)生的課余興趣愛好情況(每個(gè)學(xué)生必須選一項(xiàng)且只能選一項(xiàng)),并根據(jù)調(diào)查結(jié)果繪制了如下統(tǒng)計(jì)圖:根據(jù)統(tǒng)計(jì)圖所提供的信息,解答下列問題:(1)本次抽樣調(diào)查中的樣本容量是;(2)補(bǔ)全條形統(tǒng)計(jì)圖;(3)該校共有2000名學(xué)生,請(qǐng)根據(jù)統(tǒng)計(jì)結(jié)果估計(jì)該校課余興趣愛好為“打球”的學(xué)生人數(shù).19.(8分)如圖所示,內(nèi)接于圓O,于D;(1)如圖1,當(dāng)AB為直徑,求證:;(2)如圖2,當(dāng)AB為非直徑的弦,連接OB,則(1)的結(jié)論是否成立?若成立請(qǐng)證明,不成立說明由;(3)如圖3,在(2)的條件下,作于E,交CD于點(diǎn)F,連接ED,且,若,,求CF的長(zhǎng)度.20.(8分)如圖,在平行四邊形ABCD中,BD為對(duì)角線,AE⊥BD,CF⊥BD,垂足分別為E、F,連接AF、CE,求證:AF=CE.21.(8分)某商場(chǎng)以每件30元的價(jià)格購(gòu)進(jìn)一種商品,試銷中發(fā)現(xiàn)這種商品每天的銷售量m(件)與每件的銷售價(jià)x(元)滿足一次函數(shù)關(guān)系m=162﹣3x.請(qǐng)寫出商場(chǎng)賣這種商品每天的銷售利潤(rùn)y(元)與每件銷售價(jià)x(元)之間的函數(shù)關(guān)系式.商場(chǎng)每天銷售這種商品的銷售利潤(rùn)能否達(dá)到500元?如果能,求出此時(shí)的銷售價(jià)格;如果不能,說明理由.22.(10分)如圖1,已知拋物線y=ax2+bx(a≠0)經(jīng)過A(6,0)、B(8,8)兩點(diǎn).(1)求拋物線的解析式;(2)將直線OB向下平移m個(gè)單位長(zhǎng)度后,得到的直線與拋物線只有一個(gè)公共點(diǎn)D,求m的值及點(diǎn)D的坐標(biāo);(3)如圖2,若點(diǎn)N在拋物線上,且∠NBO=∠ABO,則在(2)的條件下,在坐標(biāo)平面內(nèi)有點(diǎn)P,求出所有滿足△POD∽△NOB的點(diǎn)P坐標(biāo)(點(diǎn)P、O、D分別與點(diǎn)N、O、B對(duì)應(yīng)).23.(12分)如圖,吊車在水平地面上吊起貨物時(shí),吊繩BC與地面保持垂直,吊臂AB與水平線的夾角為64°,吊臂底部A距地面1.5m.(計(jì)算結(jié)果精確到0.1m,參考數(shù)據(jù)sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)(1)當(dāng)?shù)醣鄣撞緼與貨物的水平距離AC為5m時(shí),吊臂AB的長(zhǎng)為m.(2)如果該吊車吊臂的最大長(zhǎng)度AD為20m,那么從地面上吊起貨物的最大高度是多少?(吊鉤的長(zhǎng)度與貨物的高度忽略不計(jì))24.網(wǎng)上購(gòu)物已經(jīng)成為人們常用的一種購(gòu)物方式,售后評(píng)價(jià)特別引人關(guān)注,消費(fèi)者在網(wǎng)店購(gòu)買某種商品后,對(duì)其有“好評(píng)”、“中評(píng)”、“差評(píng)”三種評(píng)價(jià),假設(shè)這三種評(píng)價(jià)是等可能的.(1)小明對(duì)一家網(wǎng)店銷售某種商品顯示的評(píng)價(jià)信息進(jìn)行了統(tǒng)計(jì),并列出了兩幅不完整的統(tǒng)計(jì)圖.利用圖中所提供的信息解決以下問題:①小明一共統(tǒng)計(jì)了個(gè)評(píng)價(jià);②請(qǐng)將圖1補(bǔ)充完整;③圖2中“差評(píng)”所占的百分比是;(2)若甲、乙兩名消費(fèi)者在該網(wǎng)店購(gòu)買了同一商品,請(qǐng)你用列表格或畫樹狀圖的方法幫助店主求一下兩人中至少有一個(gè)給“好評(píng)”的概率.

2023學(xué)年模擬測(cè)試卷參考答案(含詳細(xì)解析)一、選擇題(共10小題,每小題3分,共30分)1、D【答案解析】

解:∵直線l1與x軸的交點(diǎn)為A(﹣1,0),∴﹣1k+b=0,∴,解得:.∵直線l1:y=﹣1x+4與直線l1:y=kx+b(k≠0)的交點(diǎn)在第一象限,∴,解得0<k<1.故選D.【答案點(diǎn)睛】?jī)蓷l直線相交或平行問題;一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征.2、D【答案解析】測(cè)試卷分析:根據(jù)三視圖的法則可知B為俯視圖,D為主視圖,主視圖為一個(gè)正方形.3、C【答案解析】

連接AE,根據(jù)翻折變換的性質(zhì)和正方形的性質(zhì)可證Rt△AFE≌Rt△ADE,在直角△ECG中,根據(jù)勾股定理求出DE的長(zhǎng).【題目詳解】連接AE,∵AB=AD=AF,∠D=∠AFE=90°,由折疊的性質(zhì)得:Rt△ABG≌Rt△AFG,在△AFE和△ADE中,∵AE=AE,AD=AF,∠D=∠AFE,∴Rt△AFE≌Rt△ADE,∴EF=DE,設(shè)DE=FE=x,則CG=3,EC=6?x.在直角△ECG中,根據(jù)勾股定理,得:(6?x)2+9=(x+3)2,解得x=2.則DE=2.【答案點(diǎn)睛】熟練掌握翻折變換、正方形的性質(zhì)、全等三角形的判定與性質(zhì)是本題的解題關(guān)鍵.4、C【答案解析】分析:結(jié)合2個(gè)圖象分析即可.詳解:A.根據(jù)圖2甲的圖象可知甲車在立交橋上共行駛時(shí)間為:,故正確.B.3段弧的長(zhǎng)度都是:從F口出比從G口出多行駛40m,正確.C.分析圖2可知甲車從G口出,乙車從F口出,故錯(cuò)誤.D.立交橋總長(zhǎng)為:故正確.故選C.點(diǎn)睛:考查圖象問題,觀察圖象,讀懂圖象是解題的關(guān)鍵.5、B【答案解析】∵在正方形ABCD中,AB=,∴AC=4,AD=DC=,∠DAP=∠DCA=45o,當(dāng)點(diǎn)Q在AD上時(shí),PA=PQ,∴DP=AP=x,∴S=;當(dāng)點(diǎn)Q在DC上時(shí),PC=PQCP=4-x,∴S=;所以該函數(shù)圖象前半部分是拋物線開口向上,后半部分也為拋物線開口向下,故選B.【答案點(diǎn)睛】本題考查動(dòng)點(diǎn)問題的函數(shù)圖象,有一定難度,解題關(guān)鍵是注意點(diǎn)Q在AP、DC上這兩種情況.6、B【答案解析】

根據(jù)菱形的性質(zhì)得出△DAB是等邊三角形,進(jìn)而利用全等三角形的判定得出△ABG≌△DBH,得出四邊形GBHD的面積等于△ABD的面積,進(jìn)而求出即可.【題目詳解】連接BD,∵四邊形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等邊三角形,∵AB=2,∴△ABD的高為,∵扇形BEF的半徑為2,圓心角為60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,設(shè)AD、BE相交于點(diǎn)G,設(shè)BF、DC相交于點(diǎn)H,在△ABG和△DBH中,,∴△ABG≌△DBH(ASA),∴四邊形GBHD的面積等于△ABD的面積,∴圖中陰影部分的面積是:S扇形EBF-S△ABD==.故選B.7、C【答案解析】測(cè)試卷解析:∵x=-2是關(guān)于x的一元二次方程的一個(gè)根,

∴(-2)2+a×(-2)-a2=0,即a2+3a-2=0,

整理,得(a+2)(a-1)=0,

解得a1=-2,a2=1.

即a的值是1或-2.

故選A.點(diǎn)睛:一元二次方程的解的定義:能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.又因?yàn)橹缓幸粋€(gè)未知數(shù)的方程的解也叫做這個(gè)方程的根,所以,一元二次方程的解也稱為一元二次方程的根.8、D【答案解析】測(cè)試卷分析:找到一定發(fā)生或一定不發(fā)生的事件即可.A、陰天一定會(huì)下雨,是隨機(jī)事件;B、黑暗中從5把不同的鑰匙中隨意摸出一把,用它打開了門,是隨機(jī)事件;C、打開電視機(jī),任選一個(gè)頻道,屏幕上正在播放新聞聯(lián)播,是隨機(jī)事件;D、在學(xué)校操場(chǎng)上向上拋出的籃球一定會(huì)下落,是必然事件.故選D.考點(diǎn):隨機(jī)事件.9、C【答案解析】

極差、中位數(shù)、眾數(shù)、平均數(shù)的定義和計(jì)算公式分別對(duì)每一項(xiàng)進(jìn)行分析,即可得出答案.【題目詳解】解:A、這組數(shù)據(jù)的極差是:60-25=35,故本選項(xiàng)錯(cuò)誤;

B、40出現(xiàn)的次數(shù)最多,出現(xiàn)了4次,則眾數(shù)是40,故本選項(xiàng)錯(cuò)誤;

C、把這些數(shù)從小到大排列,最中間兩個(gè)數(shù)的平均數(shù)是(40+40)÷2=40,則中位數(shù)是40,故本選項(xiàng)正確;

D、這組數(shù)據(jù)的平均數(shù)(25+30×2+40×4+50×2+60)÷10=40.5,故本選項(xiàng)錯(cuò)誤;

故選:C.【答案點(diǎn)睛】本題考查了極差、平均數(shù)、中位數(shù)、眾數(shù)的知識(shí),解答本題的關(guān)鍵是掌握各知識(shí)點(diǎn)的概念.10、D【答案解析】分析:根據(jù)圖示,可得:c<b<0<a,,據(jù)此逐項(xiàng)判定即可.詳解:∵c<0<a,|c|>|a|,∴a+c<0,∴選項(xiàng)A不符合題意;∵c<b<0,∴b+c<0,∴選項(xiàng)B不符合題意;∵c<b<0<a,c<0,∴ac<0,bc>0,∴ac<bc,∴選項(xiàng)C不符合題意;∵a>b,∴a﹣c>b﹣c,∴選項(xiàng)D符合題意.故選D.點(diǎn)睛:此題考查了數(shù)軸,考查了有理數(shù)的大小比較關(guān)系,考查了不等關(guān)系與不等式.熟記有理數(shù)大小比較法則,即正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于一切負(fù)數(shù).二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、【答案解析】

原式提取2,再利用完全平方公式分解即可.【題目詳解】原式【答案點(diǎn)睛】先考慮提公因式法,再用公式法進(jìn)行分解,最后考慮十字相乘,差項(xiàng)補(bǔ)項(xiàng)等方法.12、1【答案解析】作DH⊥x軸于H,如圖,

當(dāng)y=0時(shí),-3x+3=0,解得x=1,則A(1,0),

當(dāng)x=0時(shí),y=-3x+3=3,則B(0,3),

∵四邊形ABCD為正方形,

∴AB=AD,∠BAD=90°,

∴∠BAO+∠DAH=90°,

而∠BAO+∠ABO=90°,

∴∠ABO=∠DAH,

在△ABO和△DAH中∴△ABO≌△DAH,

∴AH=OB=3,DH=OA=1,

∴D點(diǎn)坐標(biāo)為(1,1),

∵頂點(diǎn)D恰好落在雙曲線y=上,

∴a=1×1=1.故答案是:1.13、120人,3000人【答案解析】

根據(jù)B的人數(shù)除以占的百分比得到調(diào)查的總?cè)藬?shù),再用總?cè)藬?shù)減去A、B、D的人數(shù)得到本次抽樣調(diào)查中喜愛小棗粽的人數(shù);利用該社區(qū)的總?cè)藬?shù)×愛吃鮮肉粽的人數(shù)所占的百分比得出結(jié)果.【題目詳解】調(diào)查的總?cè)藬?shù)為:60÷10%=600(人),本次抽樣調(diào)查中喜愛小棗粽的人數(shù)為:600﹣180﹣60﹣240=120(人);若該社區(qū)有10000人,估計(jì)愛吃鮮肉粽的人數(shù)約為:100003000(人).故答案為120人;3000人.【答案點(diǎn)睛】本題考查了條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖的綜合運(yùn)用.讀懂統(tǒng)計(jì)圖,從不同的統(tǒng)計(jì)圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計(jì)圖能清楚地表示出每個(gè)項(xiàng)目的數(shù)據(jù);扇形統(tǒng)計(jì)圖直接反映部分占總體的百分比大?。部疾榱死脴颖竟烙?jì)總體.14、或.【答案解析】

MN是AB的中垂線,則△ABN是等腰三角形,且NA=NB,即可得到∠B=∠BAN=∠C.然后對(duì)△ANC中的邊進(jìn)行討論,然后在△ABC中,利用三角形內(nèi)角和定理即可求得∠B的度數(shù).解:∵把△ABC折疊,使點(diǎn)B與點(diǎn)A重合,折痕交AB于點(diǎn)M,交BC于點(diǎn)N,∴MN是AB的中垂線.∴NB=NA.∴∠B=∠BAN,∵AB=AC∴∠B=∠C.設(shè)∠B=x°,則∠C=∠BAN=x°.1)當(dāng)AN=NC時(shí),∠CAN=∠C=x°.則在△ABC中,根據(jù)三角形內(nèi)角和定理可得:4x=180,解得:x=45°則∠B=45°;2)當(dāng)AN=AC時(shí),∠ANC=∠C=x°,而∠ANC=∠B+∠BAN,故此時(shí)不成立;3)當(dāng)CA=CN時(shí),∠NAC=∠ANC=.在△ABC中,根據(jù)三角形內(nèi)角和定理得到:x+x+x+=180,解得:x=36°.故∠B的度數(shù)為45°或36°.15、-1.【答案解析】

根據(jù)根的判別式計(jì)算即可.【題目詳解】解:依題意得:∵關(guān)于的一元二次方程有兩個(gè)相等的實(shí)數(shù)根,∴==4-41(-k)=4+4k=0解得,k=-1.故答案為:-1.【答案點(diǎn)睛】本題考查了一元二次方程根的判別式,當(dāng)=>0時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)==0時(shí),方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)=<0時(shí),方程無實(shí)數(shù)根.16、﹣【答案解析】連接OB.∵AB是⊙O切線,∴OB⊥AB,∵OC=OB,∠C=30°,∴∠C=∠OBC=30°,∴∠AOB=∠C+∠OBC=60°,在Rt△ABO中,∵∠ABO=90°,AB=,∠A=30°,∴OB=1,∴S陰=S△ABO﹣S扇形OBD=×1×﹣=﹣.三、解答題(共8題,共72分)17、(1)4,補(bǔ)全統(tǒng)計(jì)圖見詳解.(2)10;20;72.(3)見詳解.【答案解析】

(1)根據(jù)喜歡籃球的人數(shù)與所占的百分比列式計(jì)算即可求出學(xué)生的總?cè)藬?shù),再求出喜歡足球的人數(shù),然后補(bǔ)全統(tǒng)計(jì)圖即可;

(2)分別求出喜歡排球、喜歡足球的百分比即可得到m、n的值,用喜歡足球的人數(shù)所占的百分比乘以360°即可;

(3)畫出樹狀圖,然后根據(jù)概率公式列式計(jì)算即可得解.【題目詳解】解:(1)九(1)班的學(xué)生人數(shù)為:12÷30%=40(人),喜歡足球的人數(shù)為:40?4?12?16=40?32=8(人),補(bǔ)全統(tǒng)計(jì)圖如圖所示;(2)∵×100%=10%,×100%=20%,∴m=10,n=20,表示“足球”的扇形的圓心角是20%×360°=72°;故答案為(1)40;(2)10;20;72;(3)根據(jù)題意畫出樹狀圖如下:一共有12種情況,恰好是1男1女的情況有6種,∴P(恰好是1男1女)==.18、(1)100;(2)作圖見解析;(3)1.【答案解析】測(cè)試卷分析:(1)根據(jù)百分比=計(jì)算即可;(2)求出“打球”和“其他”的人數(shù),畫出條形圖即可;(3)用樣本估計(jì)總體的思想解決問題即可.測(cè)試卷解析:(1)本次抽樣調(diào)查中的樣本容量=30÷30%=100,故答案為100;(2)其他有100×10%=10人,打球有100﹣30﹣20﹣10=40人,條形圖如圖所示:(3)估計(jì)該校課余興趣愛好為“打球”的學(xué)生人數(shù)為2000×40%=1人.19、(1)見解析;(2)成立;(3)【答案解析】

(1)根據(jù)圓周角定理求出∠ACB=90°,求出∠ADC=90°,再根據(jù)三角形內(nèi)角和定理求出即可;(2)根據(jù)圓周角定理求出∠BOC=2∠A,求出∠OBC=90°-∠A和∠ACD=90°-∠A即可;(3)分別延長(zhǎng)AE、CD交⊙O于H、K,連接HK、CH、AK,在AD上取DG=BD,延長(zhǎng)CG交AK于M,延長(zhǎng)KO交⊙O于N,連接CN、AN,求出關(guān)于a的方程,再求出a即可.【題目詳解】(1)證明:∵AB為直徑,∴,∵于D,∴,∴,,∴;(2)成立,證明:連接OC,由圓周角定理得:,∵,∴,∵,∴,∴;(3)分別延長(zhǎng)AE、CD交⊙O于H、K,連接HK、CH、AK,∵,,∴,∴,,∵,∴,∵根據(jù)圓周角定理得:,∴,∴由三角形內(nèi)角和定理得:,∴,∴,同理,∵,∴,在AD上取,延長(zhǎng)CG交AK于M,則,,∴,∴,延長(zhǎng)KO交⊙O于N,連接CN、AN,則,∴,∵,∴,∴四邊形CGAN是平行四邊形,∴,作于T,則T為CK的中點(diǎn),∵O為KN的中點(diǎn),∴,∵,,∴由勾股定理得:,∴,作直徑HS,連接KS,∵,,∴由勾股定理得:,∴,∴,設(shè),,∴,,∵,∴,解得:,∴,∴.【答案點(diǎn)睛】本題考查了垂徑定理、解直角三角形、等腰三角形的性質(zhì)、圓周角定理、勾股定理等知識(shí)點(diǎn),能綜合運(yùn)用知識(shí)點(diǎn)進(jìn)行推理是解此題的關(guān)鍵,綜合性比較強(qiáng),難度偏大.20、見解析【答案解析】

易證△ABE≌△CDF,得AE=CF,即可證得△AEF≌△CFE,即可得證.【題目詳解】在平行四邊形ABCD中,AB∥CD,AB=CD∴∠ABE=∠CDF,又AE⊥BD,CF⊥BD∴△ABE≌△CDF(AAS),∴AE=CF又∠AEF=∠CFE,EF=FE,∴△AEF≌△CFE(SAS)∴AF=CE.【答案點(diǎn)睛】此題主要考查平行四邊形的性質(zhì)與全等三角形的判定與性質(zhì),解題的關(guān)鍵是熟知平行四邊形的性質(zhì)定理.21、(1)y=﹣3x2+252x﹣1(2≤x≤54);(2)商場(chǎng)每天銷售這種商品的銷售利潤(rùn)不能達(dá)到500元.【答案解析】

(1)此題可以按等量關(guān)系“每天的銷售利潤(rùn)=(銷售價(jià)﹣進(jìn)價(jià))×每天的銷售量”列出函數(shù)關(guān)系式,并由售價(jià)大于進(jìn)價(jià),且銷售量大于零求得自變量的取值范圍.(2)根據(jù)(1)所得的函數(shù)關(guān)系式,利用配方法求二次函數(shù)的最值即可得出答案.【題目詳解】(1)由題意得:每件商品的銷售利潤(rùn)為(x﹣2)元,那么m件的銷售利潤(rùn)為y=m(x﹣2).又∵m=162﹣3x,∴y=(x﹣2)(162﹣3x),即y=﹣3x2+252x﹣1.∵x﹣2≥0,∴x≥2.又∵m≥0,∴162﹣3x≥0,即x≤54,∴2≤x≤54,∴所求關(guān)系式為y=﹣3x2+252x﹣1(2≤x≤54).(2)由(1)得y=﹣3x2+252x﹣1=﹣3(x﹣42)2+432,所以可得售價(jià)定為42元時(shí)獲得的利潤(rùn)最大,最大銷售利潤(rùn)是432元.∵500>432,∴商場(chǎng)每天銷售這種商品的銷售利潤(rùn)不能達(dá)到500元.【答案點(diǎn)睛】本題考查了二次函數(shù)在實(shí)際生活中的應(yīng)用,解答本題的關(guān)鍵是根據(jù)等量關(guān)系:“每天的銷售利潤(rùn)=(銷售價(jià)﹣進(jìn)價(jià))×每天的銷售量”列出函數(shù)關(guān)系式,另外要熟練掌握二次函數(shù)求最值的方法.22、(1)拋物線的解析式是y=x2﹣3x;(2)D點(diǎn)的坐標(biāo)為(4,﹣4);(3)點(diǎn)P的坐標(biāo)是()或().【答案解析】測(cè)試卷分析:(1)利用待定系數(shù)法求二次函數(shù)解析式進(jìn)而得出答案即可;

(2)首先求出直線OB的解析式為y=x,進(jìn)而將二次函數(shù)以一次函數(shù)聯(lián)立求出交點(diǎn)即可;

(3)首先求出直線A′B的解析式,進(jìn)而由△P1OD∽△NOB,得出△P1OD∽△N1OB1,進(jìn)而求出點(diǎn)P1的坐標(biāo),再利用翻折變換的性質(zhì)得出另一點(diǎn)的坐標(biāo).測(cè)試卷解析:(1)∵拋物線y=ax2+bx(a≠0)經(jīng)過A(6,0)、B(8,8)∴將A與B兩點(diǎn)坐標(biāo)代入得:,解得:,∴拋物線的解析式是y=x2﹣3x.(2)設(shè)直線OB的解析式為y=k1x,由點(diǎn)B(8,8),得:8=8k1,解得:k1=1∴直線OB的解析式為y=x,∴直線OB向下平移m個(gè)單位長(zhǎng)度后的解析式為:y=x﹣m,∴x﹣m=x2﹣3x,∵拋物線與直線只有一個(gè)公共點(diǎn),∴△=16﹣2m=0,解得:m=8,此時(shí)x1=x2=4,y=x2﹣3x=﹣4,∴D點(diǎn)的坐標(biāo)為(4,﹣4)(3)∵直線OB的解析式為y=x,且A(6,0),∴點(diǎn)A關(guān)于直線OB的對(duì)稱點(diǎn)A′的坐標(biāo)是(0,6),根據(jù)軸對(duì)稱性質(zhì)和三線合一性質(zhì)得出∠A′BO=∠ABO,設(shè)直線A′B的解析式為y=k2x+6,過點(diǎn)(8,8),∴8k2+6=8,解得:k2=,∴直線A′B的解析式是y=,∵∠NBO=∠ABO,∠A′BO=∠ABO,∴BA′和BN重合,即點(diǎn)N在直線A′B上,∴設(shè)點(diǎn)N(n,),又點(diǎn)N在拋物線y=x2﹣3x上,∴=n2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論