2022年江蘇無錫梁溪區(qū)四校聯(lián)考數(shù)學九年級第一學期期末達標檢測試題含解析_第1頁
2022年江蘇無錫梁溪區(qū)四校聯(lián)考數(shù)學九年級第一學期期末達標檢測試題含解析_第2頁
2022年江蘇無錫梁溪區(qū)四校聯(lián)考數(shù)學九年級第一學期期末達標檢測試題含解析_第3頁
2022年江蘇無錫梁溪區(qū)四校聯(lián)考數(shù)學九年級第一學期期末達標檢測試題含解析_第4頁
2022年江蘇無錫梁溪區(qū)四校聯(lián)考數(shù)學九年級第一學期期末達標檢測試題含解析_第5頁
免費預(yù)覽已結(jié)束,剩余17頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.若是方程的根,則的值為()A.2022 B.2020 C.2018 D.20162.如圖,三個邊長均為的正方形重疊在一起,、是其中兩個正方形對角線的交點,則兩個陰影部分面積之和是()A. B. C. D.3.函數(shù)y=3(x﹣2)2+4的圖像的頂點坐標是()A.(3,4) B.(﹣2,4) C.(2,4) D.(2,﹣4)4.若點是反比例函數(shù)圖象上一點,則下列說法正確的是()A.圖象位于二、四象限B.當時,隨的增大而減小C.點在函數(shù)圖象上D.當時,5.一個不透明的袋子里裝著質(zhì)地、大小都相同的3個紅球和2個綠球,隨機從中摸出一球,不再放回袋中,充分攪勻后再隨機摸出一球.兩次都摸到紅球的概率是()A. B. C. D.6.去年某校有1500人參加中考,為了了解他們的數(shù)學成績,從中抽取200名考生的數(shù)學成績,其中有60名考生達到優(yōu)秀,那么該??忌_到優(yōu)秀的人數(shù)約有()A.400名 B.450名 C.475名 D.500名7.兩個相似多邊形一組對應(yīng)邊分別為3cm,4.5cm,那么它們的相似比為()A. B. C. D.8.在某籃球邀請賽中,參賽的每兩個隊之間都要比賽一場,共比賽36場,設(shè)有x個隊參賽,根據(jù)題意,可列方程為()A. B.C. D.9.下列拋物線中,其頂點在反比例函數(shù)y=的圖象上的是()A.y=(x﹣4)2+3 B.y=(x﹣4)2﹣3 C.y=(x+2)2+1 D.y=(x+2)2﹣110.如圖,四邊形ABCD是正方形,以BC為底邊向正方形外部作等腰直角三角形BCE,連接AE,分別交BD,BC于點F,G,則下列結(jié)論:①△AFB∽△ABE;②△ADF∽△GCE;③CG=3BG;④AF=EF,其中正確的有().A.①③ B.②④ C.①② D.③④二、填空題(每小題3分,共24分)11.如圖,PA與⊙O相切于點A,AB是⊙O的直徑,在⊙O上存在一點C滿足PA=PC,連結(jié)PB、AC相交于點F,且∠APB=3∠BPC,則=_____.12.數(shù)據(jù)8,8,10,6,7的眾數(shù)是__________.13.如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB于點D,如果CD=4,那么AD?BD的值是_____.14.若拋物線y=2x2+6x+m與x軸有兩個交點,則m的取值范圍是_____.15.在一個不透明的袋子中裝有3個白球和若干個紅球,這些球除顏色外都相同.每次從袋子中隨機摸出一個球,記下顏色后再放回袋中,通過多次重復(fù)試驗發(fā)現(xiàn)摸出紅球的頻率穩(wěn)定在0.7附近,則袋子中紅球約有___個.16.如圖,為了測量某棵樹的高度,小明用長為2m的竹竿做測量工具,移動竹竿,使竹竿、樹的頂端的影子恰好落在地面的同一點.此時,竹竿與這一點距離相距6m,與樹相距15m,則樹的高度為_________m.17.寫出一個以-1為一個根的一元二次方程.18.二次函數(shù)y=3(x+2)的頂點坐標______.三、解答題(共66分)19.(10分)如圖,直線與雙曲線在第一象限內(nèi)交于兩點,已知.(1)求的值及直線的解析式.(2)根據(jù)函數(shù)圖象,直接寫出不等式的解集.(3)設(shè)點是線段上的一個動點,過點作軸于點是軸上一點,當?shù)拿娣e為時,請直接寫出此時點的坐標.20.(6分)如圖,四邊形ABCD中,AB=AD,∠BAD=60°,∠BCD=30°,將AC繞著點A順時針旋轉(zhuǎn)60°得AE,連接BE,CE.(1)求證:△ADC≌△ABE;(2)求證:(3)若AB=2,點Q在四邊形ABCD內(nèi)部運動,且滿足,直接寫出點Q運動路徑的長度.21.(6分)小王準備給小李打電話,由于保管不善,電話本上的小李手機號中,有兩個數(shù)字已經(jīng)模糊不清,如果用,表示這兩個看不清的數(shù)字,那么小李的號碼為(手機號碼由11個數(shù)字組成),小王記得這11個數(shù)字之和是20的整數(shù)倍.(1)求的值;(2)求出小王一次撥對小李手機號的概率.22.(8分)如圖,在平面直角坐標系中,拋物線y=ax2+bx+6經(jīng)過點A(﹣3,0)和點B(2,0),直線y=h(h為常數(shù),且0<h<6)與BC交于點D,與y軸交于點E,與AC交于點F.(1)求拋物線的解析式;(2)連接AE,求h為何值時,△AEF的面積最大.(3)已知一定點M(﹣2,0),問:是否存在這樣的直線y=h,使△BDM是等腰三角形?若存在,請求出h的值和點D的坐標;若不存在,請說明理由.23.(8分)已知關(guān)于x的一元二次方程.(1)求證:無論k取何值,方程總有兩個實數(shù)根;(2)若二次函數(shù)的圖象與軸兩個交點的橫坐標均為整數(shù),且k為整數(shù),求k的值.24.(8分)如圖,在平面直角坐標系中,的三個頂點都在格點上,點的坐標為,請解答下列問題:(1)畫出關(guān)于軸對稱的,點的坐標為______;(2)在網(wǎng)格內(nèi)以點為位似中心,把按相似比放大,得到,請畫出;若邊上任意一點的坐標為,則兩次變換后對應(yīng)點的坐標為______.25.(10分)如圖,△ABC內(nèi)接于⊙O,AB=AC,∠BAC=36°,過點A作AD∥BC,與∠ABC的平分線交于點D,BD與AC交于點E,與⊙O交于點F.(1)求∠DAF的度數(shù);(2)求證:AE2=EF?ED;(3)求證:AD是⊙O的切線.26.(10分)如圖,在矩形ABCD中,M是BC中點,請你僅用無刻度直尺按要求作圖.(1)在圖1中,作AD的中點P;(2)在圖2中,作AB的中點Q.

參考答案一、選擇題(每小題3分,共30分)1、B【分析】根據(jù)一元二次方程的解的定義,將x=m代入已知方程,即可求得(m2+m)的值,然后將其整體代入所求的代數(shù)式進行求值即可.【詳解】依題意得:m2+m-1=0,

則m2+m=1,

所以2m2+2m+2018=2(m2+m)+2018=2×1+2018=1.

故選:B.【點睛】此題考查一元二次方程的解.解題關(guān)鍵在于能夠使方程左右兩邊相等的未知數(shù)的值.即用這個數(shù)代替未知數(shù)所得式子仍然成立.2、A【分析】連接AN,CN,通過將每部分陰影的面積都轉(zhuǎn)化為正方形ACFE的面積的,則答案可求.【詳解】如圖,連接AN,CN∵四邊形ACFE是正方形∴∵,∴∴∴所以四邊形BCDN的面積為正方形ACFE的面積的同理可得另一部分陰影的面積也是正方形ACFE的面積的∴兩部分陰影部分的面積之和為正方形ACFE的面積的即故選A【點睛】本題主要考查不規(guī)則圖形的面積,能夠利用全等三角形對面積進行轉(zhuǎn)化是解題的關(guān)鍵.3、C【詳解】函數(shù)y=3(x﹣2)2+4的圖像的頂點坐標是(2,4)故選C.4、B【分析】先根據(jù)點A(3、4)是反比例函數(shù)y=圖象上一點求出k的值,求出函數(shù)的解析式,由此函數(shù)的特點對四個選項進行逐一分析.【詳解】∵點A(3,4)是反比例函數(shù)y=圖象上一點,

∴k=xy=3×4=12,

∴此反比例函數(shù)的解析式為y=,

A、因為k=12>0,所以此函數(shù)的圖象位于一、三象限,故本選項錯誤;

B、因為k=12>0,所以在每一象限內(nèi)y隨x的增大而減小,故本選項正確;

C、因為2×(-6)=-12≠12,所以點(2、-6)不在此函數(shù)的圖象上,故本選項錯誤;

D、當y≤4時,即y=≤4,解得x<0或x≥3,故本選項錯誤.

故選:B.【點睛】此題考查反比例函數(shù)圖象上點的坐標特點,根據(jù)題意求出反比例函數(shù)的解析式是解答此題的關(guān)鍵.5、A【分析】列表或畫樹狀圖得出所有等可能的結(jié)果,找出兩次都為紅球的情況數(shù),即可求出所求的概率:【詳解】列表如下:

﹣﹣﹣

(紅,紅)

(紅,紅)

(綠,紅)

(綠,綠)

(紅,紅)

﹣﹣﹣

(紅,紅)

(綠,紅)

(綠,紅)

(紅,紅)

(紅,紅)

﹣﹣﹣

(綠,紅)

(綠,紅)

(紅,綠)

(紅,綠)

(紅,綠)

﹣﹣﹣

(綠,綠)

(紅,綠)

(紅,綠)

(紅,綠)

(綠,綠)

﹣﹣﹣

∵所有等可能的情況數(shù)為20種,其中兩次都為紅球的情況有6種,∴,故選A.6、B【分析】根據(jù)已知求出該??忌膬?yōu)秀率,再根據(jù)該校的總?cè)藬?shù),即可求出答案.【詳解】∵抽取200名考生的數(shù)學成績,其中有60名考生達到優(yōu)秀,∴該校考生的優(yōu)秀率是:×100%=30%,∴該校達到優(yōu)秀的考生約有:1500×30%=450(名);故選B.【點睛】此題考查了用樣本估計總體,關(guān)鍵是根據(jù)樣本求出優(yōu)秀率,運用了樣本估計總體的思想.7、A【解析】由題意得,兩個相似多邊形的一組對應(yīng)邊的比為3:4.5=,∴它們的相似比為,故選A.8、A【分析】共有x個隊參加比賽,則每隊參加(x-1)場比賽,但2隊之間只有1場比賽,根據(jù)共安排36場比賽,列方程即可.【詳解】解:設(shè)有x個隊參賽,根據(jù)題意,可列方程為:x(x﹣1)=36,故選A.【點睛】此題考查由實際問題抽象出一元二次方程,解題關(guān)鍵在于得到比賽總場數(shù)的等量關(guān)系.9、A【分析】根據(jù)y=得k=xy=12,所以只要點的橫坐標與縱坐標的積等于12,就在函數(shù)圖象上.【詳解】解:∵y=,∴k=xy=12,A、y=(x﹣4)2+3的頂點為(4,3),4×3=12,故y=(x﹣4)2+3的頂點在反比例函數(shù)y=的圖象上,B、y=(x﹣4)2﹣3的頂點為(4,﹣3),4×(﹣3)=﹣12≠12,故y=(x﹣4)2﹣3的頂點不在反比例函數(shù)y=的圖象上,C、y=(x+2)2+1的頂點為(﹣2,1),﹣2×1=﹣2≠12,故y=(x+2)2+1的頂點不在反比例函數(shù)y=的圖象上,D、y=(x+2)2﹣1的頂點為(﹣2,﹣1),﹣2×(﹣1)=2≠12,故y=(x+2)2﹣1的頂點不在反比例函數(shù)y=的圖象上,故選:A.【點睛】本題考查的知識點是拋物線的頂點坐標以及反比例函數(shù)圖象上點的坐標,根據(jù)拋物線的解析式確定拋物線的頂點坐標是解此題的關(guān)鍵.10、B【解析】連接AC,交BD于O,過點E作EH⊥BC于H,由正方形的性質(zhì)及等腰直角三角形的性質(zhì)可得∠ADF=∠ABD=∠BCE=∠CBE=45°,可得∠ABE=135°,根據(jù)外角性質(zhì)可得∠AFD=∠FAB+∠ABF>45°,利用平角定義可得∠AFB<135°,即可證明∠AFB≠∠ABE,可對①進行判斷;由EH⊥BC可證明EH//AB,根據(jù)平行線的性質(zhì)可得∠HEG=∠FAB,根據(jù)角的和差關(guān)系可證明∠DAF=∠CEG,即可證明△ADF∽△GCE;可對②進行判斷,由EH//AB可得△HEG∽△BAG,根據(jù)相似三角形的性質(zhì)即可得出BG=2HG,根據(jù)等腰直角三角形性質(zhì)可得CH=BH,進而可得CG=2BG,可對③進行判斷;根據(jù)正方形的性質(zhì)可得OA=BE,∠AOF=∠FBE=90°,利用AAS可證明△AOF≌△EBF,可得AF=EF,可對④進行判斷;綜上即可得答案.【詳解】如圖,連接AC,交BD于O,過點E作EH⊥BC于H,∵ABCD是正方形,△BCE是等腰直角三角形,∴∠ADF=∠ABD=∠BCE=∠CBE=45°,∴∠ABE=135°,∵∠AFD=∠BAF+∠ABF=∠BAF+45°>45°,∴∠AFB=180°-∠AFD<135°,∴∠AFB≠∠ABE,∴△AFB與△ABE不相似,故①錯誤,∵EH⊥BC,∠ABC=90°,∴EH//AB,∴∠HEG=∠FAB,∴∠AFD=∠FAB+∠ABD=45°+∠HEG=∠CEG,又∵∠ADB=∠GCE=45°,∴△ADF∽△GCE,故②正確,∵EH//AB,∴△HEG∽△BAG,∴,∵△BCE是等腰直角三角形,∴EH=CH=BH=BC=AB,∴=,即BG=2HG,∴CH=BH=3HG,∴CG=CH+HG=4HG,∴CG=2BG,故③錯誤,∵ABCD是正方形,△BCE是等腰直角三角形,∴∠AOF=90°,∠FBE=∠DBC+∠CBE=45°+45°=90°,OA=AB,BE=BC,∴∠AOF=∠FBE,OA=BE,在△AOF和△EBF中,,∴△AOF≌△EBF,∴AF=EF,故④正確,綜上所述:正確的結(jié)論有②④,故選:B.【點睛】本題考查正方形的性質(zhì)、等腰直角三角形的性質(zhì)、全等三角形的判定與性質(zhì)及相似三角形的判定與性質(zhì),熟練掌握相關(guān)判定定理及性質(zhì)是解題關(guān)鍵.二、填空題(每小題3分,共24分)11、.【分析】連接OP,OC,證明△OAP≌△OCP,可得PC與⊙O相切于點C,證明BC=CP,設(shè)OM=x,則BC=CP=AP=2x,PM=y(tǒng),證得△AMP∽△OAP,可得:,證明△PMF∽△BCF,由可得出答案.【詳解】解:連接OP,OC.∵PA與⊙O相切于點A,PA=PC,∴∠OAP=90°,∵OA=OC,OP=OP,∴△OAP≌△OCP(SSS),∴∠OAP=∠OCP=90°,∴PC與⊙O相切于點C,∵∠APB=3∠BPC,∠APO=∠CPO,∴∠CPB=∠OPB,∵AB是⊙O的直徑,∴∠BCA=90°,∵OP⊥AC,∴OP∥BC,∴∠CBP=∠CPB,∴BC=CP=AP.∵OA=OB,∴OM=.設(shè)OM=x,則BC=CP=AP=2x,PM=y(tǒng),∵∠OAP=∠AMP=90°,∠MPA=∠APO,∴△AMP∽△OAP,∴.∴AP2=PM?OP,∴(2x)2=y(tǒng)(y+x),解得:,(舍去).∵PM∥BC,∴△PMF∽△BCF,∴=.故答案為:.【點睛】本題考查了切線的判定與性質(zhì),等腰三角形的判定與性質(zhì),相似三角形的判定與性質(zhì),圓周角定理.正確作出輔助線,熟練掌握相似三角形的判定與性質(zhì)是解題的關(guān)鍵.12、1【分析】根據(jù)眾數(shù)的概念即可得出答案.【詳解】眾數(shù)是指一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù),題中的1出現(xiàn)次數(shù)最多,所以眾數(shù)是1故答案為:1.【點睛】本題主要考查眾數(shù),掌握眾數(shù)的概念是解題的關(guān)鍵.13、1【分析】先由角的互余關(guān)系,導(dǎo)出∠DCA=∠B,結(jié)合∠BDC=∠CDA=90°,證明△BCD∽△CAD,利用相似三角形的性質(zhì),列出比例式,變形即可得答案.【詳解】解:∵∠ACB=90°,CD⊥AB于點D,∴∠BCD+∠DCA=90°,∠B+∠BCD=90°∴∠DCA=∠B,又∵∠BDC=∠CDA=90°,∴△BCD∽△CAD,∴BD:CD=CD:AD,∴AD?BD=CD2=42=1,故答案為:1.【點睛】本題主要考查相似三角形的判定和性質(zhì),解決本題的關(guān)鍵是要熟練掌握相似三角形的判定和性質(zhì).14、【分析】由拋物線與x軸有兩個交點,可得出關(guān)于m的一元一次不等式,解之即可得出m的取值范圍.【詳解】∵拋物線y=2x2+6x+m與x軸有兩個交點,∴△=62﹣4×2m=36﹣8m>0,∴m.故答案為:m.【點睛】本題考查了拋物線與x軸的交點,牢記“當△=b2﹣4ac>0時,拋物線與x軸有2個交點”是解答本題的關(guān)鍵.15、1.【分析】根據(jù)口袋中有3個白球和若干個紅球,利用紅球在總數(shù)中所占比例得出與實驗比例應(yīng)該相等求出即可.【詳解】設(shè)袋中紅球有x個,根據(jù)題意,得:,解得:x=1,經(jīng)檢驗:x=1是分式方程的解,所以袋中紅球有1個,故答案為1.【點睛】此題考查利用頻率估計概率,解題關(guān)鍵在于利用紅球在總數(shù)中所占比例進行求解.16、7【解析】設(shè)樹的高度為m,由相似可得,解得,所以樹的高度為7m17、答案不唯一,如【解析】試題分析:根據(jù)一元二次方程的根的定義即可得到結(jié)果.答案不唯一,如考點:本題考查的是方程的根的定義點評:解答本題關(guān)鍵的是熟練掌握方程的根的定義:方程的根就是使方程左右兩邊相等的未知數(shù)的值.18、(-2,0);【分析】由二次函數(shù)的頂點式,即可得到答案.【詳解】解:二次函數(shù)y=3(x+2)的頂點坐標是(,0);故答案為:(,0);【點睛】本題考查了二次函數(shù)的性質(zhì),解題的關(guān)鍵是熟練掌握二次函數(shù)的頂點坐標.三、解答題(共66分)19、(1),(2)解集為或(3)【分析】(1)先把B(2,1)代入,求出反比例函數(shù)解析式,進而求出點A坐標,最后用待定系數(shù)法,即可得出直線AB的解析式;(2)直接利用函數(shù)圖象得出結(jié)論;(3)先設(shè)出點P坐標,進而表示出△PED的面積等于,解之即可得出結(jié)論.【詳解】解:(1):∵點在雙曲線上,∴,∴雙曲線的解析式為.∵在雙曲線,∴,∴.∵直線過兩點,∴,解得∴直線的解析式為(2)根據(jù)函數(shù)圖象,由不等式與函數(shù)圖像的關(guān)系可得:雙曲線在直線上方的部分對應(yīng)的x范圍是:或,∴不等式的解集為或.(3)點的坐標為.設(shè)點,且,則.∵當時,解得,∴此時點的坐標為.【點睛】此題是反比例函數(shù)綜合題,主要考查了一次函數(shù)和反比例函數(shù)的圖象和性質(zhì),待定系數(shù)法,三角形的面積公式,求出直線AB的解析式是解本題的關(guān)鍵.20、(1)證明見解析;(2)證明見解析;(3).【解析】(1)推出∠DAC=∠BAE,則可直接由SAS證明△ADC≌△ABE;(2)證明△BCE是直角三角形,再證DC=BE,AC=CE即可推出結(jié)論;(3)如圖2,設(shè)Q為滿足條件的點,將AQ繞著點A順時針旋轉(zhuǎn)60度得AF,連接QF,BF,QB,DQ,AF,證△ADQ≌△ABF,由勾股定理的逆定理證∠FBQ=90°,求出∠DQB=150°,確定點Q的路徑為過B,D,C三點的圓上,求出的長即可.【詳解】(1)證明:∵∠CAE=∠DAB=60°,∴∠CAE-∠CAB=∠DAB-∠CAB,∴∠DAC=∠BAE,又∵AD=AB,AC=AE,∴△ADC≌△ABE(SAS);(2)證明:在四邊形ABCD中,∠ADC+∠ABC=360°-∠DAB-∠DCB=270°,∵△ADC≌△ABE,∴∠ADC=∠ABE,CD=BE,∴∠ABC+ABE=∠ABC+∠ADC=270°,∴∠CBE=360°-(∠ABC+ABE)=90°,∴CE2=BE2+BC2,又∵AC=AE,∠CAE=60°,∴△ACE是等邊三角形,∴CE=AC=AE,∴AC2=DC2+BC2;(3)解:如圖2,設(shè)Q為滿足條件的點,將AQ繞著點A順時針旋轉(zhuǎn)60度得AF,連接QF,BF,QB,DQ,AF,則∠DAQ=∠BAF,AQ=QF,△AQF為等邊三角形,又∵AD=AB,∴△ADQ≌△ABF(SAS),∴AQ=FQ,BF=DQ,∵AQ2=BQ2+DQ2,∴FQ2=BQ2+BF2,∴∠FBQ=90°,∴∠AFB+∠AQB=360°-(∠QAF+∠FBQ)=210°,∴∠AQD+∠AQB=210°,∴∠DQB=360°-(∠AQD+∠AQB)=150°,∴點Q的路徑為過B,D,C三點的圓上,如圖2,設(shè)圓心為O,則∠BOD=2∠DCB=60°,連接DB,則△ODB與△ADB為等邊三角形,∴DO=DB=AB=2,∴點Q運動的路徑長為:.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),等邊三角形的性質(zhì),四邊形的內(nèi)角和,勾股定理的逆定理,圓的有關(guān)性質(zhì)及計算等,綜合性較強,解題關(guān)鍵是能夠熟練掌握并靈活運用圓的有關(guān)性質(zhì).21、(1)14;(2).【分析】(1)根據(jù)題意求出11個數(shù)字之和,再根據(jù)和是20的整數(shù)倍進行求解;(2)先求出、的可能值,再根據(jù)概率公式進行求解.【詳解】(1)11個數(shù)字之和為=46+=20n,∵這11個數(shù)字之和是20的整數(shù)倍,2<<18∴當n=3時,即;(2)∵、的可能值為9和5,8和6,7和7,6和8,5和9,∴小王一次撥對小李手機號碼的概率【點睛】此題主要考查概率的求解,解題的關(guān)鍵是熟知概率公式.22、(1)y=﹣x2﹣x+1;(2)當h=3時,△AEF的面積最大,最大面積是.(3)存在,當h=時,點D的坐標為(,);當h=時,點D的坐標為(,).【分析】(1)利用待定系數(shù)法即可解決問題.(2)由題意可得點E的坐標為(0,h),點F的坐標為(,h),根據(jù)S△AEF=?OE?FE=?h?=﹣(h﹣3)2+.利用二次函數(shù)的性質(zhì)即可解決問題.(3)存在.分兩種情形情形,分別列出方程即可解決問題.【詳解】解:如圖:(1)∵拋物線y=ax2+bx+1經(jīng)過點A(﹣3,0)和點B(2,0),∴,解得:.∴拋物線的解析式為y=﹣x2﹣x+1.(2)∵把x=0代入y=﹣x2﹣x+1,得y=1,∴點C的坐標為(0,1),設(shè)經(jīng)過點A和點C的直線的解析式為y=mx+n,則,解得,∴經(jīng)過點A和點C的直線的解析式為:y=2x+1,∵點E在直線y=h上,∴點E的坐標為(0,h),∴OE=h,∵點F在直線y=h上,∴點F的縱坐標為h,把y=h代入y=2x+1,得h=2x+1,解得x=,∴點F的坐標為(,h),∴EF=.∴S△AEF=?OE?FE=?h?=﹣(h﹣3)2+,∵﹣<0且0<h<1,∴當h=3時,△AEF的面積最大,最大面積是.(3)存在符合題意的直線y=h.∵B(2,0),C(0,1),∴直線BC的解析式為y=﹣3x+1,設(shè)D(m,﹣3m+1).①當BM=BD時,(m﹣2)2+(﹣3m+1)2=42,解得m=或(舍棄),∴D(,),此時h=.②當MD=BM時,(m+2)2+(﹣3m+1)2=42,解得m=或2(舍棄),∴D(,),此時h=.∵綜上所述,存在這樣的直線y=或y=,使△BDM是等腰三角形,當h=時,點D的坐標為(,);當h=時,點D的坐標為(,).【點睛】此題考查了待定系數(shù)法求函數(shù)的解析式、二次函數(shù)的性質(zhì)、等腰三角形的性質(zhì)、勾股定理一次函數(shù)的應(yīng)用等知識,此題難度較大,注意掌握方程思想、分類討論思想與數(shù)形結(jié)合思想的應(yīng)用.23、(1)、證明過程見解析;(2)、±1.【分析】(1)、首先得出方程的根的判別式,然后利用配方法得出非負數(shù),從而得出答案;(2)、根據(jù)公式法得出方程的解,然后根據(jù)解為整數(shù)得出k的值.【詳解】(1)、△=(3k+1)2-4k×3=(3k-1)2∵(3k-1)2≥0∴△≥0,∴無論k取何值,方程總有兩個實數(shù)根;(2)、kx2+(3k+1)x+3=0(k≠0)解得:x=,x1=,x2=3,所以二次函數(shù)y=kx2+(3k+1)x+3的圖象與x軸兩個交點的橫坐標分別為和3,根據(jù)題意得為整數(shù),所以整數(shù)k為±1.考點:二次函數(shù)的性質(zhì)24、(1)圖見解析,(2,1);(2)圖見解析,【分析】(1)依次作出點A、B、C三點關(guān)于x軸的對稱點A1、B1、C1,再順次連接即可;根據(jù)關(guān)于x軸對稱的點的坐標特點:橫坐標不變,縱坐標互為相反數(shù)寫出即可;(2)根據(jù)位似圖形的性質(zhì)作圖即可;先求出經(jīng)過一次變換(關(guān)于x軸對稱)的點的坐標,再根據(jù)關(guān)于(1,1)為位似中心的點的坐標規(guī)律:橫坐標=-2×(原橫坐標-1)+1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論