版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年安徽省銅陵市普通高校對口單招高等數(shù)學(xué)一自考測試卷(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(50題)1.方程x2+2y2+3z2=1表示的二次曲面是
A.圓錐面B.旋轉(zhuǎn)拋物面C.球面D.橢球面
2.
3.設(shè)∫0xf(t)dt=xsinx,則f(x)=()A.sinx+xcosxB.sinx-xcosxC.xcosx-sinxD.-(sinx+xcosx)
4.如圖所示兩楔形塊A、B自重不計(jì),二者接觸面光滑,受大小相等、方向相反且沿同一直線的兩個(gè)力的作用,則()。
A.A平衡,B不平衡B.A不平衡,B平衡C.A、B均不平衡D.A、B均平衡
5.設(shè)lnx是f(x)的一個(gè)原函數(shù),則f'(x)=()。A.
B.
C.
D.
6.圖示結(jié)構(gòu)中,F(xiàn)=10N,I為圓桿,直徑d=15mm,2為正方形截面桿,邊長為a=20mm,α=30。,則各桿強(qiáng)度計(jì)算有誤的一項(xiàng)為()。
A.1桿受拉20kNB.2桿受壓17.3kNC.1桿拉應(yīng)力50MPaD.2桿壓應(yīng)力43.3MPa
7.
8.設(shè)函數(shù)f(x)在(0,1)內(nèi)可導(dǎo),f'(x)>0,則f(x)在(0,1)內(nèi)()A.A.單調(diào)減少B.單調(diào)增加C.為常量D.不為常量,也不單調(diào)
9.A.f(1)-f(0)
B.2[f(1)-f(0)]
C.2[f(2)-f(0)]
D.
10.
11.A.
B.
C.-cotx+C
D.cotx+C
12.
13.A.A.2B.-1/2C.1/2eD.(1/2)e1/2
14.
15.下列函數(shù)在指定區(qū)間上滿足羅爾中值定理?xiàng)l件的是
A.
B.f(x)=(x-4)2,x∈[-2,4]
C.
D.f(x)=|x|,x∈[-1,1]
16.
17.當(dāng)x→0時(shí),x是ln(1+x2)的
A.高階無窮小B.同階但不等價(jià)無窮小C.等價(jià)無窮小D.低階無窮小18.若,則下列命題中正確的有()。A.
B.
C.
D.
19.A.A.1
B.
C.
D.1n2
20.
21.微分方程y'+y=0的通解為y=A.e-x+C
B.-e-x+C
C.Ce-x
D.Cex
22.
23.
24.
A.
B.
C.
D.
25.設(shè)y1(x),y2(x)二階常系數(shù)線性微分方程y+py+qy=0的兩個(gè)線性無關(guān)的解,則它的通解為()A.A.y1(x)+c2y2(x)
B.c1y1(x)+y2(x)
C.y1(x)+y2(x)
D.c1y1(x)+c2y2(x)注.c1,C2為任意常數(shù).
26.()A.A.
B.
C.
D.
27.
28.設(shè)a={-1,1,2),b={3,0,4},則向量a在向量b上的投影為()A.A.
B.1
C.
D.-1
29.A.
B.
C.
D.
30.下列關(guān)于動載荷的敘述不正確的一項(xiàng)是()。
A.動載荷和靜載荷的本質(zhì)區(qū)別是前者構(gòu)件內(nèi)各點(diǎn)的加速度必須考慮,而后者可忽略不計(jì)
B.勻速直線運(yùn)動時(shí)的動荷因數(shù)為
C.自由落體沖擊時(shí)的動荷因數(shù)為
D.增大靜變形是減小沖擊載荷的主要途徑
31.方程z=x2+y2表示的二次曲面是().
A.球面
B.柱面
C.圓錐面
D.拋物面
32.設(shè)x2是f(x)的一個(gè)原函數(shù),則f(x)=A.A.2x
B.x3
C.(1/3)x3+C
D.3x3+C
33.下列說法中不能提高梁的抗彎剛度的是()。
A.增大梁的彎度B.增加梁的支座C.提高梁的強(qiáng)度D.增大單位面積的抗彎截面系數(shù)34.A.A.e2/3
B.e
C.e3/2
D.e6
35.設(shè)f(x),g(x)在[a,b]上連續(xù),則()。
A.若,則在[a,b]上f(x)=0
B.若,則在[a,b]上f(x)=g(x)
C.若a<c<d<b,則
D.若f(x)≤g(z),則
36.
37.設(shè)z=ln(x2+y),則等于()。A.
B.
C.
D.
38.()A.A.2xy+y2
B.x2+2xy
C.4xy
D.x2+y2
39.設(shè)f'(x0)=1,則等于().A.A.3B.2C.1D.1/2
40.
41.設(shè)f(x)在點(diǎn)x0處連續(xù),則下面命題正確的是()A.A.
B.
C.
D.
42.如圖所示,在半徑為R的鐵環(huán)上套一小環(huán)M,桿AB穿過小環(huán)M并勻速繞A點(diǎn)轉(zhuǎn)動,已知轉(zhuǎn)角φ=ωt(其中ω為一常數(shù),φ的單位為rad,t的單位為s),開始時(shí)AB桿處于水平位置,則當(dāng)小環(huán)M運(yùn)動到圖示位置時(shí)(以MO為坐標(biāo)原點(diǎn),小環(huán)Md運(yùn)動方程為正方向建立自然坐標(biāo)軸),下面說法不正確的一項(xiàng)是()。
A.小環(huán)M的運(yùn)動方程為s=2Rωt
B.小環(huán)M的速度為
C.小環(huán)M的切向加速度為0
D.小環(huán)M的法向加速度為2Rω2
43.
44.A.A.條件收斂B.絕對收斂C.收斂性與k有關(guān)D.發(fā)散
45.圖示懸臂梁,若已知截面B的撓度和轉(zhuǎn)角分別為vB和θB,則C端撓度為()。
A.vC=2uB
B.uC=θBα
C.vC=uB+θBα
D.vC=vB
46.A.
B.x2
C.2x
D.
47.級數(shù)(a為大于0的常數(shù))().A.A.絕對收斂B.條件收斂C.發(fā)散D.收斂性與a有關(guān)48.設(shè)y=sin2x,則y'=A.A.2cosxB.cos2xC.2cos2xD.cosx49.A.A.0B.1C.2D.3
50.
二、填空題(20題)51.設(shè)函數(shù)z=f(x,y)存在一階連續(xù)偏導(dǎo)數(shù),則全微分出dz=______.52.設(shè)y=1nx,則y'=__________.
53.
54.55.設(shè)z=x2y+siny,=________。56.
57.
58.
59.設(shè)f(x,y)=sin(xy2),則df(x,y)=______.
60.
61.
62.63.64.設(shè)y=3x,則y"=_________。
65.
66.
67.
68.
69.
70.
三、計(jì)算題(20題)71.求微分方程的通解.72.
73.研究級數(shù)的收斂性(即何時(shí)絕對收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.74.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.75.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.76.將f(x)=e-2X展開為x的冪級數(shù).
77.
78.
79.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).80.求曲線在點(diǎn)(1,3)處的切線方程.
81.求微分方程y"-4y'+4y=e-2x的通解.
82.83.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則84.
85.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
86.證明:87.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.88.
89.
90.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
四、解答題(10題)91.用洛必達(dá)法則求極限:
92.
93.
94.
95.96.97.計(jì)算∫tanxdx.
98.
99.用鐵皮做一個(gè)容積為V的圓柱形有蓋桶,證明當(dāng)圓柱的高等于底面直徑時(shí),所使用的鐵皮面積最小。100.計(jì)算,其中D為曲線y=x,y=1,x=0圍成的平面區(qū)域.五、高等數(shù)學(xué)(0題)101.
;D:x2+y2≤4。
六、解答題(0題)102.設(shè)f(x)為連續(xù)函數(shù),且
參考答案
1.D本題考查了二次曲面的知識點(diǎn)。
2.B解析:
3.A
4.C
5.C
6.C
7.C
8.B由于f'(x)>0,可知f(x)在(0,1)內(nèi)單調(diào)增加.因此選B.
9.D本題考查的知識點(diǎn)為定積分的性質(zhì);牛頓-萊布尼茨公式.
可知應(yīng)選D.
10.D
11.C本題考查的知識點(diǎn)為不定積分基本公式.
12.B
13.B
14.D解析:
15.C
16.C解析:
17.D解析:
18.B本題考查的知識點(diǎn)為級數(shù)收斂性的定義。
19.C本題考查的知識點(diǎn)為定積分運(yùn)算.
因此選C.
20.C
21.C
22.C
23.C
24.B本題考查的知識點(diǎn)為交換二次積分次序。由所給二次積分可知積分區(qū)域D可以表示為1≤y≤2,y≤x≤2,交換積分次序后,D可以表示為1≤x≤2,1≤y≤x,故應(yīng)選B。
25.D
26.A
27.A
28.B
29.C據(jù)右端的二次積分可得積分區(qū)域D為選項(xiàng)中顯然沒有這個(gè)結(jié)果,于是須將該區(qū)域D用另一種不等式(X-型)表示.故D又可表示為
30.C
31.D對照標(biāo)準(zhǔn)二次曲面的方程可知z=x2+y2表示的二次曲面是拋物面,故選D.
32.A由于x2為f(x)的一個(gè)原函數(shù),由原函數(shù)的定義可知f(x)=(x2)'=2x,故選A。
33.A
34.D
35.D由定積分性質(zhì):若f(x)≤g(x),則
36.D解析:
37.A本題考查的知識點(diǎn)為偏導(dǎo)數(shù)的計(jì)算。由于故知應(yīng)選A。
38.A
39.B本題考查的知識點(diǎn)為導(dǎo)數(shù)的定義.
由題設(shè)知f'(x0)=1,又由題設(shè)條件知
可知應(yīng)選B.
40.D
41.C本題考查的知識點(diǎn)有兩個(gè):連續(xù)性與極限的關(guān)系;連續(xù)性與可導(dǎo)的關(guān)系.
連續(xù)性的定義包含三個(gè)要素:若f(x)在點(diǎn)x0處連續(xù),則
(1)f(x)在點(diǎn)x0處必定有定義;
(2)必定存在;
(3)
由此可知所給命題C正確,A,B不正確.
注意連續(xù)性與可導(dǎo)的關(guān)系:可導(dǎo)必定連續(xù);連續(xù)不一定可導(dǎo),可知命題D不正確.故知,應(yīng)選C.
本題常見的錯(cuò)誤是選D.這是由于考生沒有正確理解可導(dǎo)與連續(xù)的關(guān)系.
若f(x)在點(diǎn)x0處可導(dǎo),則f(x)在點(diǎn)x0處必定連續(xù).
但是其逆命題不成立.
42.D
43.B
44.A本題考杏的知識點(diǎn)為級數(shù)的絕對收斂與條件收斂.
45.C
46.C
47.A本題考查的知識點(diǎn)為級數(shù)絕對收斂與條件收斂的概念.
注意為p=2的p級數(shù),因此為收斂級數(shù),由比較判別法可知收斂,故絕對收斂,應(yīng)選A.
48.C由鏈?zhǔn)椒▌t可得(sin2x)'=cos2x*(2x)'=2cos2x,故選C。
49.B
50.D解析:51.依全微分存在的充分條件知
52.
53.54.ln(1+x)+C本題考查的知識點(diǎn)為換元積分法.
55.由于z=x2y+siny,可知。56.本題考查的知識點(diǎn)為重要極限公式。
57.
58.
59.y2cos(xy2)dx+2xycos(xy2)dydf(x,y)=cos(xy2)d(xy2)=cos(xy2)(y2dx+2xydy)=y2cos(xy2)dx+2xycos(xy2)dy也可先求出,而得出df(x,y).
60.
61.
62.
63.64.3e3x
65.1
66.(sinx+cosx)exdx(sinx+cosx)exdx解析:
67.
68.(01]
69.2
70.3x2+4y
71.72.由一階線性微分方程通解公式有
73.
74.函數(shù)的定義域?yàn)?/p>
注意
75.由二重積分物理意義知
76.
77.
78.
則
79.
列表:
說明
80.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
81.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
82.
83.由等價(jià)無窮小量的定義可知
84.
85.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
;本題考查的知識點(diǎn)為定積分的換元積分法.
98.解
99.
于是由實(shí)際問題得,S存在最小值,即當(dāng)圓柱的高等于地面的直徑時(shí),所使用的鐵皮面積最小。于是由實(shí)際問題得,S存在最小值,即當(dāng)圓柱的高等于地面的直徑時(shí),所使用的鐵皮面積最小。
100.本題考查的知識點(diǎn)為選擇積分次序;計(jì)算二重積分.
由于不能利用初等函數(shù)表示出來,因此應(yīng)該將二重積分化為先對x積分后對y積分的二此積分.
101.
∵圓x2+y2≤4的面積為4π
∵圓x2+y2≤4的面積為4π102.設(shè),則f(x)=x3+3Ax.將上式兩端在[0,1]上
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度農(nóng)副食品國際貿(mào)易代理服務(wù)合同
- 2025年度內(nèi)墻粉刷與智能化管理系統(tǒng)分包合同
- 二零二五年度商業(yè)門面租賃爭議解決合同
- 二零二五年度庭院房產(chǎn)租賃合同解除與違約金合同
- 2025年度體育場館運(yùn)營管理公司健身教練合同
- 2025年度門面房租賃合同物聯(lián)網(wǎng)技術(shù)應(yīng)用協(xié)議4篇
- 課題申報(bào)參考:明代文人“引經(jīng)入戲”研究
- 認(rèn)識腧穴38課件講解
- 2025年度個(gè)人住宅室內(nèi)外綠化設(shè)計(jì)與施工合同2篇
- 2025版大型數(shù)據(jù)中心機(jī)房建設(shè)與運(yùn)維合同4篇
- 2025水利云播五大員考試題庫(含答案)
- 老年髖部骨折患者圍術(shù)期下肢深靜脈血栓基礎(chǔ)預(yù)防專家共識(2024版)解讀
- 中藥飲片驗(yàn)收培訓(xùn)
- 手術(shù)室??谱o(hù)士工作總結(jié)匯報(bào)
- DB34T 1831-2013 油菜收獲與秸稈粉碎機(jī)械化聯(lián)合作業(yè)技術(shù)規(guī)范
- 蘇州市2025屆高三期初陽光調(diào)研(零模)政治試卷(含答案)
- 創(chuàng)傷處理理論知識考核試題及答案
- (正式版)HG∕T 21633-2024 玻璃鋼管和管件選用規(guī)定
- 《義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)(2022年版)》測試題+答案
- 殘疾軍人新退休政策
- 白酒代理合同范本
評論
0/150
提交評論