2022-2023學(xué)年廣東省深圳市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第1頁
2022-2023學(xué)年廣東省深圳市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第2頁
2022-2023學(xué)年廣東省深圳市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第3頁
2022-2023學(xué)年廣東省深圳市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第4頁
2022-2023學(xué)年廣東省深圳市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第5頁
已閱讀5頁,還剩31頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年廣東省深圳市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級:________姓名:________考號:________

一、單選題(50題)1.設(shè)函數(shù)y=ex-2,則dy=()A.e^(x-3)dxB.e^(x-2)dxC.e^(x-1)dxD.e^xdx

2.

A.

B.

C.

D.

3.下列關(guān)系正確的是()。A.

B.

C.

D.

4.前饋控制、同期控制和反饋控制劃分的標(biāo)準(zhǔn)是()

A.按照時機(jī)、對象和目的劃分B.按照業(yè)務(wù)范圍劃分C.按照控制的順序劃分D.按照控制對象的全面性劃分

5.設(shè)在點(diǎn)x=1處連續(xù),則a等于()。A.-1B.0C.1D.2

6.

7.

8.在空間直角坐標(biāo)系中,方程x+z2=z的圖形是A.A.圓柱面B.圓C.拋物線D.旋轉(zhuǎn)拋物面

9.

10.A.A.

B.

C.

D.

11.A.A.為所給方程的解,但不是通解

B.為所給方程的解,但不-定是通解

C.為所給方程的通解

D.不為所給方程的解

12.

13.∫-11(3x2+sin5x)dx=()。A.-2B.-1C.1D.2

14.

15.A.A.

B.

C.

D.

16.下列關(guān)于構(gòu)建的幾何形狀說法不正確的是()。

A.軸線為直線的桿稱為直桿B.軸線為曲線的桿稱為曲桿C.等截面的直桿稱為等直桿D.橫截面大小不等的桿稱為截面桿

17.設(shè)y=f(x)在[0,1]上連續(xù),且f(0)>0,f(1)<0,則下列選項(xiàng)正確的是

A.f(x)在[0,1]上可能無界

B.f(x)在[0,1]上未必有最小值

C.f(x)在[0,1]上未必有最大值

D.方程f(x)=0在(0,1)內(nèi)至少有一個實(shí)根

18.()。A.

B.

C.

D.

19.

20.下列反常積分收斂的是()。A.∫1+∞xdx

B.∫1+∞x2dx

C.

D.

21.

22.如圖所示,在半徑為R的鐵環(huán)上套一小環(huán)M,桿AB穿過小環(huán)M并勻速繞A點(diǎn)轉(zhuǎn)動,已知轉(zhuǎn)角φ=ωt(其中ω為一常數(shù),φ的單位為rad,t的單位為s),開始時AB桿處于水平位置,則當(dāng)小環(huán)M運(yùn)動到圖示位置時(以MO為坐標(biāo)原點(diǎn),小環(huán)Md運(yùn)動方程為正方向建立自然坐標(biāo)軸),下面說法不正確的一項(xiàng)是()。

A.小環(huán)M的運(yùn)動方程為s=2Rωt

B.小環(huán)M的速度為

C.小環(huán)M的切向加速度為0

D.小環(huán)M的法向加速度為2Rω2

23.A.A.x2+cosy

B.x2-cosy

C.x2+cosy+1

D.x2-cosy+1

24.當(dāng)x→0時,x+x2+x3+x4為x的

A.等價無窮小B.2階無窮小C.3階無窮小D.4階無窮小25.()。A.

B.

C.

D.

26.

27.A.A.π/4

B.π/2

C.π

D.2π

28.設(shè)y=3+sinx,則y=()A.-cosxB.cosxC.1-cosxD.1+cosx

29.

30.

A.2B.1C.1/2D.0

31.過點(diǎn)(0,2,4)且平行于平面x+2x=1,y-3x=2的直線方程為

A.x/1=(y-2)/0=(z-4)/-3.

B.x/0=(y-2)/1=(z-4)/-3

C.x/-2=(y-2)/3=(z-4)/1

D.-2x+3(y-2)+z-4=0

32.“目標(biāo)的可接受性”可以用()來解釋。

A.公平理論B.雙因素理論C.期望理論D.強(qiáng)化理論

33.下列函數(shù)在指定區(qū)間上滿足羅爾中值定理?xiàng)l件的是

A.

B.f(x)=(x-4)2,x∈[-2,4]

C.

D.f(x)=|x|,x∈[-1,1]

34.

35.由曲線,直線y=x,x=2所圍面積為

A.

B.

C.

D.

36.

37.A.絕對收斂B.條件收斂C.發(fā)散D.無法確定斂散性

38.

39.設(shè)lnx是f(x)的一個原函數(shù),則f'(x)=()。A.

B.

C.

D.

40.設(shè)函數(shù)z=y3x,則等于().A.A.y3xlny

B.3y3xlny

C.3xy3x

D.3xy3x-1

41.

42.

43.

44.A.A.導(dǎo)數(shù)存在,且有f(a)=一1B.導(dǎo)數(shù)一定不存在C.f(a)為極大值D.f(a)為極小值

45.

46.

47.

48.當(dāng)x→0時,x2是x-ln(1+x)的().

A.較高階的無窮小B.等價無窮小C.同階但不等價無窮小D.較低階的無窮小49.級數(shù)(a為大于0的常數(shù))().A.A.絕對收斂B.條件收斂C.發(fā)散D.收斂性與a有關(guān)

50.設(shè)函數(shù)y=f(x)的導(dǎo)函數(shù),滿足f(-1)=0,當(dāng)x<-1時,f(x)<0;當(dāng)x>-1時,f(x)>0.則下列結(jié)論肯定正確的是().

A.x=-1是駐點(diǎn),但不是極值點(diǎn)B.x=-1不是駐點(diǎn)C.x=-1為極小值點(diǎn)D.x=-1為極大值點(diǎn)二、填空題(20題)51.

52.設(shè)z=ln(x2+y),則全微分dz=__________。53.

54.

55.

56.

57.

58.

59.微分方程y"+y'=0的通解為______.60.

61.

62.63.

64.

65.若∫x0f(t)dt=2e3x-2,則f(x)=________。

66.67.68.69.交換二重積分次序=______.70.三、計(jì)算題(20題)71.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?

72.

73.74.求微分方程的通解.75.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.76.

77.

78.

79.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).80.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.81.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.82.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

83.證明:84.85.將f(x)=e-2X展開為x的冪級數(shù).86.求曲線在點(diǎn)(1,3)處的切線方程.87.

88.求微分方程y"-4y'+4y=e-2x的通解.

89.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.90.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則四、解答題(10題)91.

92.

93.用洛必達(dá)法則求極限:

94.

95.

96.設(shè)y=x2+2x,求y'。

97.

98.

99.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.

100.

五、高等數(shù)學(xué)(0題)101.

的極大值是_________;極小值是________。

六、解答題(0題)102.將f(x)=sin3x展開為x的冪級數(shù),并指出其收斂區(qū)間。

參考答案

1.B

2.D

故選D.

3.C本題考查的知識點(diǎn)為不定積分的性質(zhì)。

4.A解析:根據(jù)時機(jī)、對象和目的來劃分,控制可分為前饋控制、同期控制和反饋控制。

5.C本題考查的知識點(diǎn)為函數(shù)連續(xù)性的概念。

由于y為分段函數(shù),x=1為其分段點(diǎn)。在x=1的兩側(cè)f(x)的表達(dá)式不同。因此討論y=f(x)在x=1處的連續(xù)性應(yīng)該利用左連續(xù)與右連續(xù)的概念。由于

當(dāng)x=1為y=f(x)的連續(xù)點(diǎn)時,應(yīng)有存在,從而有,即

a+1=2。

可得:a=1,因此選C。

6.A

7.C解析:

8.A

9.D

10.B本題考查的知識點(diǎn)為可導(dǎo)性的定義.當(dāng)f(x)在x=1處可導(dǎo)時,由導(dǎo)數(shù)定義可得

11.B本題考查的知識點(diǎn)為線性常系數(shù)微分方程解的結(jié)構(gòu).

12.A

13.D

14.D解析:

15.C本題考查的知識點(diǎn)為復(fù)合函數(shù)求導(dǎo).

可知應(yīng)選C.

16.D

17.D

18.C

19.D

20.DA,∫1+∞xdx==∞發(fā)散;

21.A

22.D

23.A

24.A本題考查了等價無窮小的知識點(diǎn)。

25.C由不定積分基本公式可知

26.C

27.B

28.B

29.B

30.D本題考查的知識點(diǎn)為重要極限公式與無窮小量的性質(zhì).

31.C本題考查了直線方程的知識點(diǎn).

32.C解析:目標(biāo)的可接受性可用期望理論來理解。

33.C

34.B

35.B

36.B

37.A

38.B

39.C

40.D本題考查的知識點(diǎn)為偏導(dǎo)數(shù)的計(jì)算.

z=y3x

是關(guān)于y的冪函數(shù),因此

故應(yīng)選D.

41.D

42.C

43.B解析:

44.A本題考查的知識點(diǎn)為導(dǎo)數(shù)的定義.

45.A

46.B

47.C解析:

48.C解析:本題考查的知識點(diǎn)為無窮小階的比較.

由于

可知當(dāng)x→0時,x2與x-ln(1+x)為同階但不等價無窮?。蕬?yīng)選C.

49.A本題考查的知識點(diǎn)為級數(shù)絕對收斂與條件收斂的概念.

注意為p=2的p級數(shù),因此為收斂級數(shù),由比較判別法可知收斂,故絕對收斂,應(yīng)選A.

50.C本題考查的知識點(diǎn)為極值的第-充分條件.

由f(-1)=0,可知x=-1為f(x)的駐點(diǎn),當(dāng)x<-1時f(x)<0;當(dāng)x>-1時,

f(x)>1,由極值的第-充分條件可知x=-1為f(x)的極小值點(diǎn),故應(yīng)選C.

51.x=-2x=-2解析:

52.53.0.

本題考查的知識點(diǎn)為冪級數(shù)的收斂半徑.

所給冪級數(shù)為不缺項(xiàng)情形

因此收斂半徑為0.

54.

55.1/21/2解析:

56.

57.x2x+3x+C本題考查了不定積分的知識點(diǎn)。

58.59.y=C1+C2e-x,其中C1,C2為任意常數(shù)本題考查的知識點(diǎn)為二階線性常系數(shù)齊次微分方程的求解.

二階線性常系數(shù)齊次微分方程求解的一般步驟為:先寫出特征方程,求出特征根,再寫出方程的通解.

微分方程為y"+y'=0.

特征方程為r3+r=0.

特征根r1=0.r2=-1.

因此所給微分方程的通解為

y=C1+C2e-x,

其牛C1,C2為任意常數(shù).

60.

61.0

62.

本題考查的知識點(diǎn)為定積分運(yùn)算.

63.

64.

65.6e3x

66.

67.68.解析:

69.本題考查的知識點(diǎn)為交換二重積分次序.

積分區(qū)域D:0≤x≤1,x2≤y≤x

積分區(qū)域D也可以表示為0≤y≤1,y≤x≤,因此

70.

71.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時,價格上漲1%需求量減少2.5%

72.

73.

74.

75.

76.

77.

78.

79.

列表:

說明

80.函數(shù)的定義域?yàn)?/p>

注意

81.

82.

83.

84.

85.86.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

87.由一階線性微分方程通解公式有

88.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,

89.由二重積分物理意義知

90.由等價無窮

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論