版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年甘肅省張掖市成考專升本高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(50題)1.A.A.發(fā)散B.條件收斂C.絕對(duì)收斂D.無法判定斂散性
2.
3.設(shè)y=sinx,則y'|x=0等于().A.1B.0C.-1D.-2
4.一飛機(jī)做直線水平運(yùn)動(dòng),如圖所示,已知飛機(jī)的重力為G,阻力Fn,俯仰力偶矩M和飛機(jī)尺寸a、b和d,則飛機(jī)的升力F1為()。
A.(M+Ga+FDb)/d
B.G+(M+Ga+FDb)/d
C.G一(M+Gn+FDb)/d
D.(M+Ga+FDb)/d—G
5.當(dāng)x→0時(shí),3x2+2x3是3x2的()。A.高階無窮小B.低階無窮小C.同階無窮小但不是等價(jià)無窮小D.等價(jià)無窮小
6.設(shè)f(x)在點(diǎn)x0處取得極值,則()
A.f"(x0)不存在或f"(x0)=0
B.f"(x0)必定不存在
C.f"(x0)必定存在且f"(x0)=0
D.f"(x0)必定存在,不一定為零
7.
8.設(shè)函數(shù)f(x)在[a,b]上連續(xù),則曲線y=f(x)與直線x=a,x=b,y=0所圍成的平面圖形的面積等于()。A.
B.
C.
D.
9.
10.
11.進(jìn)行鋼筋混凝土受彎構(gòu)件斜截面受剪承載力設(shè)計(jì)時(shí),防止發(fā)生斜拉破壞的措施是()。
A.控制箍筋間距和箍筋配筋率B.配置附加箍筋和吊筋C.采取措施加強(qiáng)縱向受拉鋼筋的錨固D.滿足截面限值條件
12.A.A.yxy-1
B.yxy
C.xylnx
D.xylny
13.A.eB.e-1
C.e2
D.e-2
14.A.1B.0C.2D.1/2
15.A.A.
B.
C.
D.
16.
A.x=-2B.x=2C.y=1D.y=-2
17.
18.A.A.0
B.
C.arctanx
D.
19.設(shè)f(x)的一個(gè)原函數(shù)為x2,則f'(x)等于().
A.
B.x2
C.2x
D.2
20.設(shè)().A.A.必定收斂B.必定發(fā)散C.收斂性與a有關(guān)D.上述三個(gè)結(jié)論都不正確
21.滑輪半徑r=0.2m,可繞水平軸O轉(zhuǎn)動(dòng),輪緣上纏有不可伸長的細(xì)繩,繩的一端掛有物體A,如圖所示。已知滑輪繞軸0的轉(zhuǎn)動(dòng)規(guī)律φ=0.15t3rad,其中t單位為s,當(dāng)t=2s時(shí),輪緣上M點(diǎn)的速度、加速度和物體A的速度、加速度計(jì)算不正確的是()。
A.M點(diǎn)的速度為vM=0.36m/s
B.M點(diǎn)的加速度為aM=0.648m/s2
C.物體A的速度為vA=0.36m/s
D.物體A的加速度為aA=0.36m/s2
22.A.f(x)+CB.f'(x)+CC.f(x)D.f'(x)
23.A.0B.1C.∞D(zhuǎn).不存在但不是∞
24.f(x)在[a,b]上可導(dǎo)是f(x)在[a,b]上可積的()。
A.充要條件B.充分條件C.必要條件D.無關(guān)條件
25.
26.下列關(guān)系式中正確的有()。A.
B.
C.
D.
27.
28.A.0
B.1
C.e
D.e2
29.
30.若f(x)<0,(a<z≤b)且f(b)<0,則在(a,b)內(nèi)()。A.f(x)>0B.f(x)<0C.f(x)=0D.f(x)符號(hào)不定31.A.A.條件收斂B.絕對(duì)收斂C.收斂性與k有關(guān)D.發(fā)散32.A.2B.1C.1/2D.-1
33.當(dāng)x→0時(shí),x2是x-ln(1+x)的().
A.較高階的無窮小B.等價(jià)無窮小C.同階但不等價(jià)無窮小D.較低階的無窮小
34.
35.設(shè)y=2x3,則dy=().
A.2x2dx
B.6x2dx
C.3x2dx
D.x2dx
36.用多頭鉆床在水平放置的工件上同時(shí)鉆四個(gè)直徑相同的孔,如圖所示,每個(gè)鉆頭的切屑力偶矩為M1=M2=M3=M4=一15N·m,則工件受到的總切屑力偶矩為()。
A.30N·m,逆時(shí)針方向B.30N·m,順時(shí)針方向C.60N·m,逆時(shí)針方向D.60N·m,順時(shí)針方向
37.
38.設(shè)函數(shù)f(x)=(x-1)(x-2)(x-3),則方程f(x)=0有()。A.一個(gè)實(shí)根B.兩個(gè)實(shí)根C.三個(gè)實(shí)根D.無實(shí)根39.微分方程y''-2y'=x的特解應(yīng)設(shè)為A.AxB.Ax+BC.Ax2+BxD.Ax2+Bx+C40.A.A.2
B.
C.1
D.-2
41.平衡物體發(fā)生自鎖現(xiàn)象的條件為()。
A.0≤α≤φ
B.0≤φ≤α
C.0<α<90。
D.0<φ<90。
42.A.連續(xù)且可導(dǎo)B.連續(xù)且不可導(dǎo)C.不連續(xù)D.不僅可導(dǎo),導(dǎo)數(shù)也連續(xù)
43.
A.2x2+x+C
B.x2+x+C
C.2x2+C
D.x2+C
44.
[]A.e-x+C
B.-e-x+C
C.ex+C
D.-ex+C
45.
46.
47.下列命題正確的是().A.A.
B.
C.
D.
48.設(shè)Y=x2-2x+a,貝0點(diǎn)x=1()。A.為y的極大值點(diǎn)B.為y的極小值點(diǎn)C.不為y的極值點(diǎn)D.是否為y的極值點(diǎn)與a有關(guān)
49.
50.
二、填空題(20題)51.
52.
53.54.設(shè),則y'=______。
55.
56.
20.
57.
58.
59.
60.設(shè)z=x2+y2-xy,則dz=__________。
61.
62.
63.64.65.設(shè)z=x2y+siny,=________。66.67.過原點(diǎn)且與直線垂直的平面方程為______.68.
69.70.________。三、計(jì)算題(20題)71.
72.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
73.
74.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).75.將f(x)=e-2X展開為x的冪級(jí)數(shù).76.求曲線在點(diǎn)(1,3)處的切線方程.77.
78.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.
79.
80.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.81.
82.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
83.84.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.85.求微分方程的通解.86.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則
87.求微分方程y"-4y'+4y=e-2x的通解.
88.證明:89.90.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
四、解答題(10題)91.
92.
93.計(jì)算94.(本題滿分8分)設(shè)y=x+arctanx,求y.
95.
96.求微分方程y"+9y=0的通解。
97.求曲線在點(diǎn)(1,3)處的切線方程.98.證明:在區(qū)間(0,1)內(nèi)有唯一實(shí)根.
99.
100.(本題滿分8分)
五、高等數(shù)學(xué)(0題)101.設(shè)f(x)的一個(gè)原函數(shù)是lnx,求
六、解答題(0題)102.
參考答案
1.C
2.C
3.A由于
可知應(yīng)選A.
4.B
5.D本題考查的知識(shí)點(diǎn)為無窮小階的比較。
由于,可知點(diǎn)x→0時(shí)3x2+2x3與3x2為等價(jià)無窮小,故應(yīng)選D。
6.A若點(diǎn)x0為f(x)的極值點(diǎn),可能為兩種情形之一:(1)若f(x)在點(diǎn)x0處可導(dǎo),由極值的必要條件可知f"(x0)=0;(2)如f(x)=|x|在點(diǎn)x=0處取得極小值,但f(x)=|x|在點(diǎn)x=0處不可導(dǎo),這表明在極值點(diǎn)處,函數(shù)可能不可導(dǎo)。故選A。
7.C
8.C
9.C
10.D
11.A
12.A
13.C
14.C
15.A本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的計(jì)算.
可知應(yīng)選A.
16.C解析:
17.D
18.A
19.D解析:本題考查的知識(shí)點(diǎn)為原函數(shù)的概念.
由于x2為f(x)的原函數(shù),因此
f(x)=(x2)'=2x,
因此
f'(x)=2.
可知應(yīng)選D.
20.D
21.B
22.C
23.D本題考查了函數(shù)的極限的知識(shí)點(diǎn)。
24.B∵可導(dǎo)一定連續(xù),連續(xù)一定可積;反之不一定。∴可導(dǎo)是可積的充分條件
25.A
26.B本題考查的知識(shí)點(diǎn)為定積分的性質(zhì).
由于x,x2都為連續(xù)函數(shù),因此與都存在。又由于0<x<1時(shí),x>x2,因此
可知應(yīng)選B。
27.C
28.B為初等函數(shù),且點(diǎn)x=0在的定義區(qū)間內(nèi),因此,故選B.
29.C
30.D∵f"(x)<0,(a<x≤b).∴(x)單調(diào)減少(a<x≤b)當(dāng)f(b)<0時(shí),f(x)可能大于0也可能小于0。
31.A本題考杏的知識(shí)點(diǎn)為級(jí)數(shù)的絕對(duì)收斂與條件收斂.
32.A本題考查了函數(shù)的導(dǎo)數(shù)的知識(shí)點(diǎn)。
33.C解析:本題考查的知識(shí)點(diǎn)為無窮小階的比較.
由于
可知當(dāng)x→0時(shí),x2與x-ln(1+x)為同階但不等價(jià)無窮?。蕬?yīng)選C.
34.A
35.B由微分基本公式及四則運(yùn)算法則可求得.也可以利用dy=y′dx求得故選B.
36.D
37.D
38.B
39.C因f(x)=x為一次函數(shù),且特征方程為r2-2r=0,得特征根為r1=0,r2=2.于是特解應(yīng)設(shè)為y*=(Ax+B)x=Ax2+Bx.
40.C本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念.
41.A
42.B
43.B
44.B
45.B
46.C
47.D本題考查的知識(shí)點(diǎn)為收斂級(jí)數(shù)的性質(zhì)和絕對(duì)收斂的概念.
由絕對(duì)收斂級(jí)數(shù)的性質(zhì)“絕對(duì)收斂的級(jí)數(shù)必定收斂”可知應(yīng)選D.
48.B本題考查的知識(shí)點(diǎn)為一元函數(shù)的極值。求解的一般步驟為:先求出函數(shù)的一階導(dǎo)數(shù),令偏導(dǎo)數(shù)等于零,確定函數(shù)的駐點(diǎn).再依極值的充分條件來判定所求駐點(diǎn)是否為極值點(diǎn)。由于y=x2-2x+a,可由y'=2x-2=0,解得y有唯一駐點(diǎn)x=1.又由于y"=2,可得知y"|x=1=2>0。由極值的充分條件可知x=1為y的極小值點(diǎn),故應(yīng)選B。如果利用配方法,可得y=(x-1)2+a-1≥a-1,且y|x=1=a-1,由極值的定義可知x=1為y的極小值點(diǎn),因此選B。
49.D
50.D
51.11解析:
52.
53.R54.本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的運(yùn)算。
55.
56.
57.本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的運(yùn)算。由于z=x2+3xy+2y2-y,可得
58.
59.0
60.(2x-y)dx+(2y-x)dy
61.2xy(x+y)+3
62.
63.x=-1
64.65.由于z=x2y+siny,可知。
66.
本題考查的知識(shí)點(diǎn)為隱函數(shù)的求導(dǎo).
67.2x+y-3z=0本題考查的知識(shí)點(diǎn)為平面方程和平面與直線的關(guān)系.
由于已知直線與所求平面垂直,可知所給直線的方向向量s平行于所求平面的法向量n.由于s=(2,1,-3),因此可取n=(2,1,-3).由于平面過原點(diǎn),由平面的點(diǎn)法式方程,可知所求平面方程為2x+y-3z=0
68.本題考查的知識(shí)點(diǎn)為定積分的換元法.
69.
70.1
71.
則
72.函數(shù)的定義域?yàn)?/p>
注意
73.
74.
列表:
說明
75.76.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
77.由一階線性微分方程通解公式有
78.
79.
80.
81.
82.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
83.
84.由二重積分物理意義知
85.86.由等價(jià)無窮小量的定義可知
87.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
88.
89.
90.
91.
92.特征方程為
r2—2r-8=0.
特征根為r1=-2,r2=4.
93.本題考查的知識(shí)點(diǎn)為計(jì)算廣義積分.
計(jì)算廣義積分應(yīng)依廣義積分收斂性定義,將其轉(zhuǎn)化為定積分與極限兩種運(yùn)算.即
94.
95.
96.y"+9y=0的特征方程為r2+9=0特征值為r12=±3i故通解為y=C1cos3x+C2sin3x。y"+9y=0的特征方程為r2+9=0,特征值為r1,2=±3i,故通解為y=C1cos3x+C2sin3x。97.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年綠色能源加氣站工程承包協(xié)議版B版
- 部編版語文四年級(jí)下冊(cè)第四單元教學(xué)設(shè)計(jì)及教學(xué)反思
- 二零二五年度二人合伙開設(shè)茶館的茶文化合作協(xié)議2篇
- 2024年股權(quán)押注借款協(xié)議
- 二零二五年度農(nóng)家院休閑旅游租賃服務(wù)合同2篇
- 2024年美容院合作經(jīng)營合同模板3篇
- 培訓(xùn)面試考官
- 2024年車輛出借合同
- 二零二五年醫(yī)療行業(yè)勞動(dòng)合同范本編制協(xié)議3篇
- 二零二五年度全新綠色建筑項(xiàng)目合作開發(fā)協(xié)議書模板3篇
- 雷達(dá)測(cè)距原理與應(yīng)用研究
- 湖南省懷化市2022-2023學(xué)年高二上學(xué)期期末考試政治試題(含解析)
- 干部履歷表(中共中央組織部2015年制)
- 變電站消防培訓(xùn)課件
- 2024年吉林電力股份有限公司招聘筆試參考題庫含答案解析
- 基樁靜荷載試驗(yàn)理論考試題庫(含答案)
- 標(biāo)識(shí)牌單元工程施工質(zhì)量驗(yàn)收評(píng)定表
- GB/T 43232-2023緊固件軸向應(yīng)力超聲測(cè)量方法
- (承諾書)變壓器售后服務(wù)承諾書
- 新產(chǎn)品的試制與導(dǎo)入
- 聚酰胺酰亞胺實(shí)驗(yàn)報(bào)告
評(píng)論
0/150
提交評(píng)論