版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年甘肅省天水市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.
2.設(shè)f'(x)為連續(xù)函數(shù),則等于()A.A.
B.
C.
D.
3.
A.sinx+C
B.cosx+C
C.-sinx+C
D.-COSx+C
4.
5.
6.
7.微分方程(y)2=x的階數(shù)為()A.1B.2C.3D.4
8.當(dāng)x→0時(shí),x+x2+x3+x4為x的
A.等價(jià)無(wú)窮小B.2階無(wú)窮小C.3階無(wú)窮小D.4階無(wú)窮小
9.函數(shù)f(x)=lnz在區(qū)間[1,2]上拉格朗日公式中的ε等于()。
A.ln2
B.ln1
C.lne
D.
10.
11.A.A.連續(xù)點(diǎn)
B.
C.
D.
12.微分方程y'+y=0的通解為y=A.e-x+C
B.-e-x+C
C.Ce-x
D.Cex
13.函數(shù)y=x2-x+1在區(qū)間[-1,3]上滿(mǎn)足拉格朗日中值定理的ξ=A.A.-3/4B.0C.3/4D.1
14.A.A.2/3B.3/2C.2D.3
15.
16.設(shè)y=2x3,則dy=().
A.2x2dx
B.6x2dx
C.3x2dx
D.x2dx
17.
18.設(shè)函數(shù)y=f(x)二階可導(dǎo),且f(x)<0,f(x)<0,又△y=f(x+△x)-f(x),dy=f(x)△x,則當(dāng)△x>0時(shí),有()A.△y>dy>0
B.△<dy<0
C.dy>Ay>0
D.dy<△y<0
19.由曲線,直線y=x,x=2所圍面積為
A.
B.
C.
D.
20.
二、填空題(20題)21.
22.
23.
24.
25.
26.
27.
28.
29.
30.設(shè)sinx為f(x)的原函數(shù),則f(x)=________。
31.
32.
33.二元函數(shù)z=x2+3xy+y2+2x,則=________。
34.設(shè)f(0)=0,f'(0)存在,則
35.過(guò)原點(diǎn)且與直線垂直的平面方程為_(kāi)_____.
36.
37.
38.
39.曲線y=x3-3x+2的拐點(diǎn)是__________。
40.
三、計(jì)算題(20題)41.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則
42.求微分方程y"-4y'+4y=e-2x的通解.
43.求微分方程的通解.
44.
45.證明:
46.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
47.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.
48.求曲線在點(diǎn)(1,3)處的切線方程.
49.
50.
51.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.
52.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).
53.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
54.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).
55.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫(xiě)出S(x)的表達(dá)式;
(2)求S(x)的最大值.
56.
57.
58.
59.
60.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
四、解答題(10題)61.
62.
63.求fe-2xdx。
64.給定曲線y=x3與直線y=px-q(其中p>0),求p與q為何關(guān)系時(shí),直線y=px-q是y=x3的切線.
65.
66.
67.求y=xlnx的極值與極值點(diǎn).68.
69.
70.
五、高等數(shù)學(xué)(0題)71.設(shè)求
六、解答題(0題)72.
參考答案
1.C解析:
2.C本題考查的知識(shí)點(diǎn)為牛-萊公式和不定積分的性質(zhì).
可知應(yīng)選C.
3.A
4.C
5.D
6.C
7.A
8.A本題考查了等價(jià)無(wú)窮小的知識(shí)點(diǎn)。
9.D由拉格朗日定理
10.C
11.C解析:
12.C
13.D
14.A
15.D
16.B由微分基本公式及四則運(yùn)算法則可求得.也可以利用dy=y′dx求得故選B.
17.D
18.B
19.B
20.C解析:
21.2/3
22.
23.本題考查的知識(shí)點(diǎn)為二重積分的直角坐標(biāo)與極坐標(biāo)轉(zhuǎn)化問(wèn)題。
24.
25.坐標(biāo)原點(diǎn)坐標(biāo)原點(diǎn)
26.e
27.
本題考查的知識(shí)點(diǎn)為二元函數(shù)的偏導(dǎo)數(shù).
28.
29.e-6
30.0因?yàn)閟inx為f(x)的一個(gè)原函數(shù),所以f(x)=(sinx)"=cosx,f"(x)=-sinx。31.±1.
本題考查的知識(shí)點(diǎn)為判定函數(shù)的間斷點(diǎn).
32.33.因?yàn)閦=x2+3xy+y2+2x,34.f'(0)本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的定義.
由于f(0)=0,f'(0)存在,因此
本題如果改為計(jì)算題,其得分率也會(huì)下降,因?yàn)橛行┛忌33霈F(xiàn)利用洛必達(dá)法則求極限而導(dǎo)致運(yùn)算錯(cuò)誤:
因?yàn)轭}設(shè)中只給出f'(0)存在,并沒(méi)有給出,f'(z)(x≠0)存在,也沒(méi)有給出,f'(x)連續(xù)的條件,因此上述運(yùn)算的兩步都錯(cuò)誤.35.2x+y-3z=0本題考查的知識(shí)點(diǎn)為平面方程和平面與直線的關(guān)系.
由于已知直線與所求平面垂直,可知所給直線的方向向量s平行于所求平面的法向量n.由于s=(2,1,-3),因此可取n=(2,1,-3).由于平面過(guò)原點(diǎn),由平面的點(diǎn)法式方程,可知所求平面方程為2x+y-3z=036.本題考查的知識(shí)點(diǎn)為極限運(yùn)算.
37.
38.
39.(02)
40.本題考查了改變積分順序的知識(shí)點(diǎn)。41.由等價(jià)無(wú)窮小量的定義可知
42.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
43.
44.
45.
46.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
47.
48.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
49.
50.
則
51.
52.53.函數(shù)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度天津市公共營(yíng)養(yǎng)師之二級(jí)營(yíng)養(yǎng)師全真模擬考試試卷A卷含答案
- 2024年度天津市公共營(yíng)養(yǎng)師之三級(jí)營(yíng)養(yǎng)師押題練習(xí)試題B卷含答案
- 2024年度四川省公共營(yíng)養(yǎng)師之三級(jí)營(yíng)養(yǎng)師通關(guān)題庫(kù)(附答案)
- 2024年度四川省公共營(yíng)養(yǎng)師之二級(jí)營(yíng)養(yǎng)師能力測(cè)試試卷A卷附答案
- 中國(guó)環(huán)保膠袋行業(yè)發(fā)展前景預(yù)測(cè)及投資戰(zhàn)略研究報(bào)告
- 2025標(biāo)準(zhǔn)版煤炭鐵路運(yùn)輸合同范本
- 2020-2025年中國(guó)體外診斷試劑行業(yè)市場(chǎng)前景預(yù)測(cè)及投資方向研究報(bào)告
- 2025年中國(guó)手持衛(wèi)星通信終端行業(yè)市場(chǎng)前瞻與投資戰(zhàn)略規(guī)劃分析報(bào)告
- 2025年汽車(chē)裝箱項(xiàng)目可行性研究報(bào)告
- 中國(guó)垃圾桶市場(chǎng)供需現(xiàn)狀及投資戰(zhàn)略研究報(bào)告
- 中外美術(shù)評(píng)析與欣賞智慧樹(shù)知到期末考試答案章節(jié)答案2024年湖南大學(xué)
- 事業(yè)單位考試《綜合知識(shí)和能力測(cè)試》試卷
- 福利住房與購(gòu)房補(bǔ)貼制度
- 康師傅烏龍茗茶營(yíng)銷(xiāo)策劃書(shū)
- 【川教版】《生命 生態(tài) 安全》四上第13課《預(yù)防凍瘡》課件
- 工廠籌建方案
- UPVC管道安裝施工方法
- 河南省鄭州高新技術(shù)產(chǎn)業(yè)開(kāi)發(fā)區(qū)2023-2024學(xué)年三年級(jí)上學(xué)期1月期末科學(xué)試題
- 女裝行業(yè)退貨率分析
- 計(jì)算機(jī)基礎(chǔ)理論-進(jìn)制的概念及換算試題及答案
- 森林草原防火工作培訓(xùn)課件
評(píng)論
0/150
提交評(píng)論