2022-2023學(xué)年甘肅省天水市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第1頁(yè)
2022-2023學(xué)年甘肅省天水市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第2頁(yè)
2022-2023學(xué)年甘肅省天水市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第3頁(yè)
2022-2023學(xué)年甘肅省天水市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第4頁(yè)
2022-2023學(xué)年甘肅省天水市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩23頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年甘肅省天水市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.

2.設(shè)f'(x)為連續(xù)函數(shù),則等于()A.A.

B.

C.

D.

3.

A.sinx+C

B.cosx+C

C.-sinx+C

D.-COSx+C

4.

5.

6.

7.微分方程(y)2=x的階數(shù)為()A.1B.2C.3D.4

8.當(dāng)x→0時(shí),x+x2+x3+x4為x的

A.等價(jià)無(wú)窮小B.2階無(wú)窮小C.3階無(wú)窮小D.4階無(wú)窮小

9.函數(shù)f(x)=lnz在區(qū)間[1,2]上拉格朗日公式中的ε等于()。

A.ln2

B.ln1

C.lne

D.

10.

11.A.A.連續(xù)點(diǎn)

B.

C.

D.

12.微分方程y'+y=0的通解為y=A.e-x+C

B.-e-x+C

C.Ce-x

D.Cex

13.函數(shù)y=x2-x+1在區(qū)間[-1,3]上滿(mǎn)足拉格朗日中值定理的ξ=A.A.-3/4B.0C.3/4D.1

14.A.A.2/3B.3/2C.2D.3

15.

16.設(shè)y=2x3,則dy=().

A.2x2dx

B.6x2dx

C.3x2dx

D.x2dx

17.

18.設(shè)函數(shù)y=f(x)二階可導(dǎo),且f(x)<0,f(x)<0,又△y=f(x+△x)-f(x),dy=f(x)△x,則當(dāng)△x>0時(shí),有()A.△y>dy>0

B.△<dy<0

C.dy>Ay>0

D.dy<△y<0

19.由曲線,直線y=x,x=2所圍面積為

A.

B.

C.

D.

20.

二、填空題(20題)21.

22.

23.

24.

25.

26.

27.

28.

29.

30.設(shè)sinx為f(x)的原函數(shù),則f(x)=________。

31.

32.

33.二元函數(shù)z=x2+3xy+y2+2x,則=________。

34.設(shè)f(0)=0,f'(0)存在,則

35.過(guò)原點(diǎn)且與直線垂直的平面方程為_(kāi)_____.

36.

37.

38.

39.曲線y=x3-3x+2的拐點(diǎn)是__________。

40.

三、計(jì)算題(20題)41.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則

42.求微分方程y"-4y'+4y=e-2x的通解.

43.求微分方程的通解.

44.

45.證明:

46.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

47.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.

48.求曲線在點(diǎn)(1,3)處的切線方程.

49.

50.

51.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.

52.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).

53.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

54.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).

55.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫(xiě)出S(x)的表達(dá)式;

(2)求S(x)的最大值.

56.

57.

58.

59.

60.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.

四、解答題(10題)61.

62.

63.求fe-2xdx。

64.給定曲線y=x3與直線y=px-q(其中p>0),求p與q為何關(guān)系時(shí),直線y=px-q是y=x3的切線.

65.

66.

67.求y=xlnx的極值與極值點(diǎn).68.

69.

70.

五、高等數(shù)學(xué)(0題)71.設(shè)求

六、解答題(0題)72.

參考答案

1.C解析:

2.C本題考查的知識(shí)點(diǎn)為牛-萊公式和不定積分的性質(zhì).

可知應(yīng)選C.

3.A

4.C

5.D

6.C

7.A

8.A本題考查了等價(jià)無(wú)窮小的知識(shí)點(diǎn)。

9.D由拉格朗日定理

10.C

11.C解析:

12.C

13.D

14.A

15.D

16.B由微分基本公式及四則運(yùn)算法則可求得.也可以利用dy=y′dx求得故選B.

17.D

18.B

19.B

20.C解析:

21.2/3

22.

23.本題考查的知識(shí)點(diǎn)為二重積分的直角坐標(biāo)與極坐標(biāo)轉(zhuǎn)化問(wèn)題。

24.

25.坐標(biāo)原點(diǎn)坐標(biāo)原點(diǎn)

26.e

27.

本題考查的知識(shí)點(diǎn)為二元函數(shù)的偏導(dǎo)數(shù).

28.

29.e-6

30.0因?yàn)閟inx為f(x)的一個(gè)原函數(shù),所以f(x)=(sinx)"=cosx,f"(x)=-sinx。31.±1.

本題考查的知識(shí)點(diǎn)為判定函數(shù)的間斷點(diǎn).

32.33.因?yàn)閦=x2+3xy+y2+2x,34.f'(0)本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的定義.

由于f(0)=0,f'(0)存在,因此

本題如果改為計(jì)算題,其得分率也會(huì)下降,因?yàn)橛行┛忌33霈F(xiàn)利用洛必達(dá)法則求極限而導(dǎo)致運(yùn)算錯(cuò)誤:

因?yàn)轭}設(shè)中只給出f'(0)存在,并沒(méi)有給出,f'(z)(x≠0)存在,也沒(méi)有給出,f'(x)連續(xù)的條件,因此上述運(yùn)算的兩步都錯(cuò)誤.35.2x+y-3z=0本題考查的知識(shí)點(diǎn)為平面方程和平面與直線的關(guān)系.

由于已知直線與所求平面垂直,可知所給直線的方向向量s平行于所求平面的法向量n.由于s=(2,1,-3),因此可取n=(2,1,-3).由于平面過(guò)原點(diǎn),由平面的點(diǎn)法式方程,可知所求平面方程為2x+y-3z=036.本題考查的知識(shí)點(diǎn)為極限運(yùn)算.

37.

38.

39.(02)

40.本題考查了改變積分順序的知識(shí)點(diǎn)。41.由等價(jià)無(wú)窮小量的定義可知

42.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

43.

44.

45.

46.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

47.

48.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

49.

50.

51.

52.53.函數(shù)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論