2022-2023學(xué)年福建省龍巖市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第1頁(yè)
2022-2023學(xué)年福建省龍巖市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第2頁(yè)
2022-2023學(xué)年福建省龍巖市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第3頁(yè)
2022-2023學(xué)年福建省龍巖市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第4頁(yè)
2022-2023學(xué)年福建省龍巖市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩22頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年福建省龍巖市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.

2.力偶對(duì)剛體產(chǎn)生哪種運(yùn)動(dòng)效應(yīng)()。

A.既能使剛體轉(zhuǎn)動(dòng),又能使剛體移動(dòng)B.與力產(chǎn)生的運(yùn)動(dòng)效應(yīng)有時(shí)候相同,有時(shí)不同C.只能使剛體轉(zhuǎn)動(dòng)D.只能使剛體移動(dòng)3.設(shè)函數(shù)y=ex-2,則dy=()A.e^(x-3)dxB.e^(x-2)dxC.e^(x-1)dxD.e^xdx4.設(shè)函數(shù)f(x)在(0,1)內(nèi)可導(dǎo),f'(x)>0,則f(x)在(0,1)內(nèi)A.A.單調(diào)減少B.單調(diào)增加C.為常量D.不為常量,也不單調(diào)

5.設(shè)y=2^x,則dy等于().

A.x.2x-1dx

B.2x-1dx

C.2xdx

D.2xln2dx

6.設(shè)f(x)=x3+x,則等于()。A.0

B.8

C.

D.

7.

8.A.3B.2C.1D.1/2

9.收入預(yù)算的主要內(nèi)容是()

A.銷售預(yù)算B.成本預(yù)算C.生產(chǎn)預(yù)算D.現(xiàn)金預(yù)算

10.

11.A.0B.1C.2D.任意值

12.A.連續(xù)且可導(dǎo)B.連續(xù)且不可導(dǎo)C.不連續(xù)D.不僅可導(dǎo),導(dǎo)數(shù)也連續(xù)13.設(shè)函數(shù)f(x)在點(diǎn)x0處連續(xù),則下列結(jié)論肯定正確的是()。A.

B.

C.

D.

14.設(shè)lnx是f(x)的一個(gè)原函數(shù),則f'(x)=()。A.

B.

C.

D.

15.

16.

17.設(shè)lnx是f(x)的一個(gè)原函數(shù),則f'(x)=A.-1/x

B.1/x

C.-1/x2

D.1/x2

18.

19.

20.

二、填空題(20題)21.

22.

23.

24.

25.

26.

27.

28.設(shè)曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,則該切線方程為_(kāi)_____.

29.

30.31.

32.33.

34.

35.

36.

37.

38.

39.

40.

三、計(jì)算題(20題)41.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.42.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.43.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.44.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).45.求曲線在點(diǎn)(1,3)處的切線方程.

46.

47.求微分方程的通解.48.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).49.

50.51.52.53.

54.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.55.證明:

56.求微分方程y"-4y'+4y=e-2x的通解.

57.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

58.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫(xiě)出S(x)的表達(dá)式;

(2)求S(x)的最大值.

59.

60.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則四、解答題(10題)61.

62.

63.64.設(shè)存在,求f(x).

65.

66.

67.求曲線y=x3+2過(guò)點(diǎn)(0,2)的切線方程,并求該切線與曲線及直線x=1所圍成的平面圖形D的面積S。

68.

69.

70.

五、高等數(shù)學(xué)(0題)71.設(shè)生產(chǎn)某產(chǎn)品利潤(rùn)L(x)=5000+x一0.0001x2百元[單位:件],問(wèn)生產(chǎn)多少件時(shí)利潤(rùn)最大,最大利潤(rùn)是多少?

六、解答題(0題)72.

參考答案

1.A

2.A

3.B

4.B由于f'(x)>0,可知.f(x)在(0,1)內(nèi)單調(diào)增加。因此選B。

5.D南微分的基本公式可知,因此選D.

6.A本題考查的知識(shí)點(diǎn)為定積分的對(duì)稱性質(zhì)。由于所給定積分的積分區(qū)間為對(duì)稱區(qū)間,被積函數(shù)f(x)=x3+x為連續(xù)的奇函數(shù)。由定積分的對(duì)稱性質(zhì)可知

可知應(yīng)選A。

7.D

8.B,可知應(yīng)選B。

9.A解析:收入預(yù)算的主要內(nèi)容是銷售預(yù)算。

10.A

11.B

12.B

13.D本題考查的知識(shí)點(diǎn)為連續(xù)性的定義,連續(xù)性與極限、可導(dǎo)性的關(guān)系由函數(shù)連續(xù)性的定義:若在x0處f(x)連續(xù),則可知選項(xiàng)D正確,C不正確。由于連續(xù)性并不能保證f(x)的可導(dǎo)性,可知A不正確。自于連續(xù)必定能保證極限等于f(x0),而f(x0)不一定等于0,B不正確。故知應(yīng)選D。

14.C

15.A

16.B

17.C

18.B

19.A解析:

20.C

21.-2-2解析:

22.

23.由不定積分的基本公式及運(yùn)算法則,有

24.0.

本題考查的知識(shí)點(diǎn)為定積分的性質(zhì).

積分區(qū)間為對(duì)稱區(qū)間,被積函數(shù)為奇函數(shù),因此

25.

26.[01)∪(1+∞)

27.

本題考查的知識(shí)點(diǎn)為連續(xù)性與極限的關(guān)系,左極限、右極限與極限的關(guān)系.28.y=f(1)本題考查的知識(shí)點(diǎn)有兩個(gè):一是導(dǎo)數(shù)的幾何意義,二是求切線方程.

設(shè)切點(diǎn)為(x0,f(x0)),則曲線y=f(x)過(guò)該點(diǎn)的切線方程為

y-f(x0)=f'(x0)(x-x0).

由題意可知x0=1,且在(1,f(1))處曲線y=f(x)的切線平行于x軸,因此應(yīng)有f'(x0)=0,故所求切線方程為

y=f(1)=0.

本題中考生最常見(jiàn)的錯(cuò)誤為:將曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線方程寫(xiě)為

y-f(x0)=f'(x)(x-x0)

而導(dǎo)致錯(cuò)誤.本例中錯(cuò)誤地寫(xiě)為

y-f(1)=f'(x)(x-1).

本例中由于f(x)為抽象函數(shù),一些考生不習(xí)慣于寫(xiě)f(1),有些人誤寫(xiě)切線方程為

y-1=0.

29.30.1.

本題考查的知識(shí)點(diǎn)為函數(shù)在一點(diǎn)處導(dǎo)數(shù)的定義.

由于f(1)=2,可知

31.本題考查了函數(shù)的一階導(dǎo)數(shù)的知識(shí)點(diǎn)。

32.

33.1

34.2

35.

36.55解析:

37.

解析:

38.

39.

本題考查的知識(shí)點(diǎn)為隱函數(shù)的微分.

解法1將所給表達(dá)式兩端關(guān)于x求導(dǎo),可得

從而

解法2將所給表達(dá)式兩端微分,

40.41.函數(shù)的定義域?yàn)?/p>

注意

42.由二重積分物理意義知

43.

44.

列表:

說(shuō)明

45.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

46.

47.

48.49.由一階線性微分方程通解公式有

50.

51.

52.

53.

54.

55.

56.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

57.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

58.

59.

60.由等價(jià)無(wú)窮小量的定義可知

61.

62.63.本題考查的知識(shí)點(diǎn)為求隱函數(shù)的微分.

解法1將方程兩端關(guān)于x求導(dǎo),可得

解法2將方程兩端求微分

【解題指導(dǎo)】

若y=y(tǒng)(x)由方程F(x,y)=0確定,求dy常常有兩種方法.

(1)將方程F(x,y)=0直接求微分,然后解出dy.

(2)先由方程F(x,y)=0求y,再由dy=y(tǒng)dx得出微分dy.

64.本題考查的知識(shí)點(diǎn)為兩個(gè):極限的運(yùn)算;極限值是個(gè)確定的數(shù)值.

設(shè)是本題求解的關(guān)鍵.未知函數(shù)f(x)在極限號(hào)內(nèi)或f(x)在定積分號(hào)內(nèi)的、以方程形式出現(xiàn)的這類問(wèn)題,求解的基本思想是一樣的.請(qǐng)讀者明確并記住這種求解的基本思想.

本題考生中多數(shù)人不會(huì)計(jì)算,感到無(wú)從下手.考生應(yīng)該記住這類題目的解題關(guān)鍵在于明確:

如果存在,則表示一個(gè)確定的數(shù)值.

65.

66.

67.

68.69.本題考查的知識(shí)點(diǎn)為參數(shù)方程形式的函數(shù)的求導(dǎo).

70.

71.L(x)=5000+x一0.0001x2L"(x)=1—0.0002x=0:x=5000;L"

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論