2022-2023學(xué)年河南省濮陽(yáng)市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第1頁(yè)
2022-2023學(xué)年河南省濮陽(yáng)市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第2頁(yè)
2022-2023學(xué)年河南省濮陽(yáng)市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第3頁(yè)
2022-2023學(xué)年河南省濮陽(yáng)市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第4頁(yè)
2022-2023學(xué)年河南省濮陽(yáng)市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩40頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年河南省濮陽(yáng)市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(40題)1.

2.

3.()。A.收斂且和為0

B.收斂且和為α

C.收斂且和為α-α1

D.發(fā)散

4.

5.A.e

B.

C.

D.

6.設(shè)f(x)為連續(xù)函數(shù),則等于().A.A.f(x)-f(a)B.f(a)-f(x)C.f(x)D.f(a)

7.設(shè)lnx是f(x)的一個(gè)原函數(shù),則f'(x)=()。A.

B.

C.

D.

8.

9.對(duì)于微分方程y"-2y'+y=xex,利用待定系數(shù)法求其特解y*時(shí),下列特解設(shè)法正確的是()。A.y*=(Ax+B)ex

B.y*=x(Ax+B)ex

C.y*=Ax3ex

D.y*=x2(Ax+B)ex

10.微分方程y+y=0的通解為().A.A.

B.

C.

D.

11.

12.設(shè)f(x)為連續(xù)函數(shù),則等于().A.A.f(x2)B.x2f(x2)C.xf(x2)D.2xf(x2)

13.

14.

15.A.3B.2C.1D.0

16.微分方程y"+y'=0的通解為

A.y=Ce-x

B.y=e-x+C

C.y=C1e-x+C2

D.y=e-x

17.談判是雙方或多方為實(shí)現(xiàn)某種目標(biāo)就有關(guān)條件()的過(guò)程。

A.達(dá)成協(xié)議B.爭(zhēng)取利益C.避免沖突D.不斷協(xié)商

18.設(shè)y=2x3,則dy=()

A.2x2dx

B.6x2dx

C.3x2dx

D.x2dx

19.

20.

A.必定收斂B.必定發(fā)散C.收斂性與α有關(guān)D.上述三個(gè)結(jié)論都不正確

21.A.1-cosxB.1+cosxC.2-cosxD.2+cosx

22.“目標(biāo)的可接受性”可以用()來(lái)解釋。

A.公平理論B.雙因素理論C.期望理論D.強(qiáng)化理論

23.下列關(guān)系式正確的是().A.A.

B.

C.

D.

24.設(shè)函數(shù)f(x)=(1+x)ex,則函數(shù)f(x)()。

A.有極小值B.有極大值C.既有極小值又有極大值D.無(wú)極值

25.()A.A.sinx+C

B.cosx+C

C.-sinx+C

D.-cosx+C

26.當(dāng)x→0時(shí),與x等價(jià)的無(wú)窮小量是()

A.

B.ln(1+x)

C.

D.x2(x+1)

27.設(shè)y=x2-e2,則y=

A.2x-2e

B.2x-e2

C.2x-e

D.2x

28.()。A.2πB.πC.π/2D.π/4

29.方程x2+y2-2z=0表示的二次曲面是.

A.柱面B.球面C.旋轉(zhuǎn)拋物面D.橢球面

30.A.-cosxB.-ycosxC.cosxD.ycosx

31.

32.設(shè)函數(shù)在x=0處連續(xù),則等于()。A.2B.1/2C.1D.-2

33.在穩(wěn)定性計(jì)算中,若用歐拉公式算得壓桿的臨界壓力為Fcr,而實(shí)際上壓桿屬于中柔度壓桿,則()。

A.并不影響壓桿的臨界壓力值

B.實(shí)際的臨界壓力大于Fcr,是偏于安全的

C.實(shí)際的臨界壓力小于Fcr,是偏于不安全的

D.實(shí)際的臨界壓力大于Fcr,是偏于不安全的

34.圖示結(jié)構(gòu)中,F(xiàn)=10KN,1為圓桿,直徑d=15mm,2為正方形截面桿,邊長(zhǎng)為a=20mm,a=30。,則各桿強(qiáng)度計(jì)算有誤的一項(xiàng)為()。

A.1桿受力20KNB.2桿受力17.3KNC.1桿拉應(yīng)力50MPaD.2桿壓應(yīng)力43.3MPa

35.

36.()有助于同級(jí)部門或同級(jí)領(lǐng)導(dǎo)之間的溝通了解。

A.上行溝通B.下行溝通C.平行溝通D.分權(quán)

37.方程y"+3y'=x2的待定特解y*應(yīng)取().A.A.AxB.Ax2+Bx+CC.Ax2D.x(Ax2+Bx+C)

38.

A.f(x)-f(a)B.f(a)-f(x)C.f(x)D.f(a)

39.∫sin5xdx等于().

A.A.

B.

C.

D.

40.

二、填空題(50題)41.

42.

43.微分方程xy'=1的通解是_________。

44.

45.

46.

47.

48.

49.

50.

51.

52.設(shè)z=x3y2,則

53.

54.

55.

56.設(shè)y=sin2x,則dy=______.

57.

58.過(guò)點(diǎn)M1(1,2,-1)且與平面x-2y+4z=0垂直的直線方程為_________.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.微分方程dy+xdx=0的通解y=_____.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.設(shè)函數(shù)z=f(x,y)存在一階連續(xù)偏導(dǎo)數(shù),則全微分出dz=______.

88.

89.

90.

三、計(jì)算題(20題)91.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).

92.將f(x)=e-2X展開為x的冪級(jí)數(shù).

93.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.

94.

95.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

96.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.

97.

98.求微分方程的通解.

99.

100.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則

101.

102.

103.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

104.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

105.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.

106.求微分方程y"-4y'+4y=e-2x的通解.

107.證明:

108.

109.

110.求曲線在點(diǎn)(1,3)處的切線方程.

四、解答題(10題)111.

112.

113.

114.

115.

116.

117.

118.證明:ex>1+x(x>0)

119.

120.

五、高等數(shù)學(xué)(0題)121.討論y=xe-x的增減性,凹凸性,極值,拐點(diǎn)。

六、解答題(0題)122.

參考答案

1.B

2.A

3.C

4.B

5.C

6.C本題考查的知識(shí)點(diǎn)為可變限積分求導(dǎo).

由于當(dāng)f(x)連續(xù)時(shí),,可知應(yīng)選C.

7.C

8.C

9.D特征方程為r2-2r+1=0,特征根為r=1(二重根),f(x)=xex,α=1為特征根,因此原方程特解y*=x2(Ax+B)ex,因此選D。

10.D本題考查的知識(shí)點(diǎn)為-階微分方程的求解.

可以將方程認(rèn)作可分離變量方程;也可以將方程認(rèn)作-階線性微分方程;還可以仿二階線性常系數(shù)齊次微分方程,并作為特例求解.

解法1將方程認(rèn)作可分離變量方程.

解法2將方程認(rèn)作-階線性微分方程.由通解公式可得

解法3認(rèn)作二階常系數(shù)線性齊次微分方程特例求解:

特征方程為r+1=0,

特征根為r=-1,

11.C

12.D解析:

13.B

14.B

15.A

16.C解析:y"+y'=0,特征方程為r2+r=0,特征根為r1=0,r2=-1;方程的通解為y=C1e-x+C1,可知選C。

17.A解析:談判是指雙方或多方為實(shí)現(xiàn)某種目標(biāo)就有關(guān)條件達(dá)成協(xié)議的過(guò)程。

18.B

19.B解析:

20.D本題考查的知識(shí)點(diǎn)為正項(xiàng)級(jí)數(shù)的比較判別法.

21.D

22.C解析:目標(biāo)的可接受性可用期望理論來(lái)理解。

23.C本題考查的知識(shí)點(diǎn)為定積分的對(duì)稱性.

24.A因f(x)=(1+x)ex且處處可導(dǎo),于是,f'(x)=ex+(1+x)·ex=(x+2)ex,令f'(x)=0得駐點(diǎn)x=-2;又x<-2時(shí),f'(x)<0;x>-2時(shí),f'(x)>0;從而f(x)在i=-2處取得極小值,且f(x)只有一個(gè)極值.

25.A

26.B?

27.D

28.B

29.C本題考查了二次曲面的知識(shí)點(diǎn)。x2+y2-2z=0可化為x2/2+y2/2=z,故表示的是旋轉(zhuǎn)拋物面。

30.C本題考查的知識(shí)點(diǎn)為二階偏導(dǎo)數(shù)。由于z=y(tǒng)sinx,因此可知應(yīng)選C。

31.B

32.C本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念。由于f(x)在點(diǎn)x=0連續(xù),因此,故a=1,應(yīng)選C。

33.B

34.C

35.A

36.C解析:平行溝通有助于同級(jí)部門或同級(jí)領(lǐng)導(dǎo)之間的溝通了解。

37.D本題考查的知識(shí)點(diǎn)為二階常系數(shù)線性微分方程特解y*的取法.

由于相應(yīng)齊次方程為y"+3y'0,

其特征方程為r2+3r=0,

特征根為r1=0,r2=-3,

自由項(xiàng)f(x)=x2,相應(yīng)于Pn(x)eαx中α=0為單特征根,因此應(yīng)設(shè)

故應(yīng)選D.

38.C

本題考查的知識(shí)點(diǎn)為可變限積分求導(dǎo).

39.A本題考查的知識(shí)點(diǎn)為不定積分的換元積分法.

,可知應(yīng)選D.

40.C

41.3

42.

43.y=lnx+C

44.2

45.

解析:

46.1/z本題考查了二元函數(shù)的二階偏導(dǎo)數(shù)的知識(shí)點(diǎn)。

47.

48.

解析:

49.-4cos2x

50.

51.

本題考查的知識(shí)點(diǎn)為連續(xù)性與極限的關(guān)系.

由于為初等函數(shù),定義域?yàn)?-∞,0),(0,+∞),點(diǎn)x=2為其定義區(qū)間(0,+∞)內(nèi)的點(diǎn),從而知

52.12dx+4dy;本題考查的知識(shí)點(diǎn)為求函數(shù)在一點(diǎn)處的全微分.

由于z=x3y2可知,均為連續(xù)函數(shù),因此

53.1/3本題考查了定積分的知識(shí)點(diǎn)。

54.0

55.

56.2cos2xdx這類問(wèn)題通常有兩種解法.

解法1利用公式dy=y'dx,先求y',由于y'=cos2x·(2x)'2cos2x,

因此dy=2cos2xdx.

解法2利用微分運(yùn)算公式

dy=d(sin2x)=cos2x·d(2x)=2cos2xdx.

57.

58.

59.2

60.

解析:

61.ee解析:

62.

63.1/21/2解析:

64.1+2ln2

65.1/2

本題考查的知識(shí)點(diǎn)為計(jì)算二重積分.

其積分區(qū)域如圖1—1陰影區(qū)域所示.

可利用二重積分的幾何意義或?qū)⒍胤e分化為二次積分解之.

解法1

解法2化為先對(duì)y積分,后對(duì)x積分的二次積分.

作平行于y軸的直線與區(qū)域D相交,沿Y軸正向看,人口曲線為y=x,作為積分下限;出口曲線為y=1,作為積分上限,因此

x≤y≤1.

區(qū)域D在x軸上的投影最小值為x=0,最大值為x=1,因此

0≤x≤1.

可得知

解法3化為先對(duì)x積分,后對(duì)y積分的二次積分.

作平行于x軸的直線與區(qū)域D相交,沿x軸正向看,入口曲線為x=0,作為積分下限;出口曲線為x=y(tǒng),作為積分上限,因此

0≤x≤y.

區(qū)域D在y軸上投影的最小值為y=0,最大值為y=1,因此

0≤y≤1.

可得知

66.(1+x)2

67.

解析:

68.

解析:

69.

解析:

70.f(x)本題考查了導(dǎo)數(shù)的原函數(shù)的知識(shí)點(diǎn)。

71.3/2本題考查了函數(shù)極限的四則運(yùn)算的知識(shí)點(diǎn)。

72.

73.1

74.y=2x+1

75.

76.

本題考查的知識(shí)點(diǎn)為隱函數(shù)的微分.

解法1將所給表達(dá)式兩端關(guān)于x求導(dǎo),可得

從而

解法2將所給表達(dá)式兩端微分,

77.0

78.

79.

80.281.-24.

本題考查的知識(shí)點(diǎn)為連續(xù)函數(shù)在閉區(qū)間上的最大值.

若f(x)在(a,b)內(nèi)可導(dǎo),在[a,b]上連續(xù),??梢岳脤?dǎo)數(shù)判定f(x)在[a,b]上的最值:

82.

83.

本題考查的知識(shí)點(diǎn)為重要極限公式.

84.

85.2

86.3yx3y-13yx3y-1

解析:87.依全微分存在的充分條件知

88.1本題考查了收斂半徑的知識(shí)點(diǎn)。

89.1/21/2解析:

90.e-2

91.

列表:

說(shuō)明

92.

93.

94.由一階線性微分方程通解公式有

95.函數(shù)的定義域?yàn)?/p>

注意

96.

97.

98.

99.

100.由等價(jià)無(wú)窮小量的定義可知

101.

102.

103.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

104.

105.由二重積分物理意義知

106.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

107.

108.

109.

110.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論