版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
Outlines123IntroductionDimensionsofBigDataFiveManagementChallengesIntroductionWedefine‘BigData’asacapabilitythatallowscompaniestoextractvaluefromlargevolumesofdata,Likeanycapability,itrequiresinvestmentintechnologies,processesandgovernance.
ValueVarietyreferstothenumberofdatatypes.Technologicaladvancesalloworganizationstogeneratevarioustypesofstructured,semi-structured,andunstructureddata.Velocityreferstothespeedatwhichdataaregeneratedandprocessed.Volumereferstotheamountofdataanorganizationoranindividualcollectsand/orgenerates.DimensionsofBigDataWhatarethekeydifferencebetween“BigDataand“analytics”?BigData≠analyticsSASaddedtwoadditionaldimensionstobigdata:variabilityandcomplexity.Variabilityreferstothevariationindataflowrates.Complexityreferstothenumberofdatasources.Oracleintroducedvalueasanadditionaldimensionofbigdata.Firmsneedtounderstandtheimportanceofusingbigdatatoincreaserevenue,andconsidertheinvestmentcostofabigdataproject.AdditionalDimensionsofBigDataBigData≠analyticsIBMaddedveracityasafourthdimension,whichrepresentstheunreliabilityanduncertaintylatentindatasources.AnintegratedviewofBigDataThethreeedgesoftheintegratedviewofbigdatarepresentthreedimensionsofbigdata:volume,velocity,andvariety.Insidethetrianglearethefivedimensionsofbigdatathatareaffectedbythegrowthofthethreetriangulardimensions:veractiy,variability,complexity,decay,andvalue.Thegrowthofthethree-edgeddimensionsisnegativelyrelatedtoveracity,butposibitvelyrelatedtocomplexity,variability,decay,andvalue.Thethreeedgesoftheintegratedviewofbigdatarepresentthreedimensionsofbigdata:volume,velocity,andvariety.Insidethetrianglearethefivedimensionsofbigdatathatareaffectedbythegrowthofthethreetriangulardimensions:veracity,variability,complexity,decay,andvalue.Thegrowthofthethree-edgeddimensionsisnegativelyrelatedtoveracity,butpositivelyrelatedtocomplexity,variability,decay,andvalue.ImpactsofBigDataApplicationPersonalizationmarketingByexploitingbigdatafrommultiplesources,firmscandeliverpersonalizedproduct/servicerecommendations,coupons,andotherpromotionaloffers.BetterPricingHarnessingbigdatacollectedfromcustomerinteractionsallowsfirmstopriceappropriatelyandreaptherewards.CostReductionBigdataanalyticsleadstobetterdemandforecasts,moreefficientroutingwithvisualizationandreal-timetrackingduringshipments,andhighlyoptimizeddistributionnetworkmanagement.ImprovedcustomerserviceBigdataanalyticscanintegratedatafrommultiplecommunicationchannels(e.g.phone,email,instantmessage)andassistcustomerservicepersonnelinunderstandingthecontextofcustomerproblemsholisticallyandaddressingproblemsquickly.FiveManagementChallengesLeadershipTalentManagementTechnologyConcernsDecisionMakingCompanyCultureBigdata’spowerdoesnoterasetheneedforvisionorhumaninsight.Asdatabecomecheaper,thecomplementstodatabecomemorevaluable.NewtechnologiesdorequireaskillsetthatisalientomostITdepartments.It’stooeasytomistakecorrelationforcausationandtofindmisleadingpatternsinthedata.BigDataTechnologyConcerns-BigDataSecurityChallengesTheFutureofBigDataBigdata'semergencehasnotremainedisolatedtoafewsectorsorspheresoftechnology,insteaddemonstratingbroadapplicationsacrossindustries.Inlightofthisreality,companiesmustfirstpursuebigdatacapabilitiesasnecessaryground-leveldevelopments,whichinturnmayfacilitatecompetitiveadvantages.Formidablechallengesfacefirmsinpursuitofbigdataintegration,butthepotentialbenefitsofbigdatapromisetopositivelyimpactcompanyoperations,marketing,customerexperience,andmore.Text2:IsYourCompanyReadyforaDigitalFuture?-OutlineBigDataFrameworkFourBigDataStrategiesFourPathwaysforTransformationTheEvolutionofBigData1234BigDataFrameworkSocialAnalyticsDecisionSciencePerformanceManagementDataExplorationDataTypeNon-transactionalDataTransactionalDataMeasurementExperimentationBusinessObjectiveBigDataFrameworkTheFirstdimension-BusinessObjectiveWhendevelopingbigdatacapabilities,companiestrytomeasureorexperiment.Whenmeasuring,organizationsknowexactlywhattheyarelookingforandlooktoseewhatthevaluesofthemeasuresare.Whentheobjectiveistoexperiment,companiestreatquestionsasahypothesisandusescientificmethodstoverifythem.TheSeconddimension-DataTypeIntheirnormalcourseoffunctioning,companiescollectdataontheiroperationsandcaptureitintheirdatabasethathasastructureorschema.Wecallthistransactionaldata.Inotherinstances,companiesdealwithdatathatcomefromsourcesotherthantransactionsandaretypicallyunstructured(e.g.,socialmediadata).PopularBigDataTechniques(1)TransactionalDataBusinessIntelligence/OnlineAnalyticalProcessing(OLAP):?Usersinteractivelyanalyzemultidimensionaldata
?Userscanroll-up,drill-down,andslicedata
?BItoolsprovidedashboardandreportcapabilitiesClusterAnalysis:segmentobjectsintogroupsbasedonsimilarpropertiesorattributesDataMining:ProcesstodiscoverandextractnewpatternsinlargedatasetsPredictiveModeling:Amodeliscreatedtobestpredicttheprobabilityofanoutcome.A/BTesting:AmethodoftestinginwhichacontrolgroupiscomparedtotestgroupstodetermineifthereisanimprovementbasedonthetestconditionTechniquePopularBigDataTechniques(2)Non-transactionalDataCrowdsourcing:?Aprocessforcollectingdatafromalargecommunityordistributedgroupofpeople
?IdeasubmissionisacommoncrowdsourcingactivityTextualAnalysis:?Computeralgorithmsthatanalyzenaturallanguage
?TopicscanbeextractedfromtextalongwiththeirlinkagesSentimentAnalysis:?Aformoftextualanalysisthatdeterminesapositive,negativeorneutralreaction?OftenusedinmarketingbrandcampaignsNetworkAnalysis:?Amethodologytoanalyzetherelationshipamongnodes(e.g.,people)
?Onsocialmediaplatforms,itcanbeusedtocreatethesocialgraphoffollowerandfriends’connectionsamongusersTechniqueFourBigDataStrategiesPerformanceManagementByexploitingbigdatafrommultiplesources,firmscandeliverpersonalizedproduct/servicerecommendations,coupons,andotherpromotionaloffers.DataExplorationHarnessingbigdatacollectedfromcustomerinteractionsallowsfirmstopriceappropriatelyandreaptherewards.SocialAnalyticsBigdataanalyticsleadstobetterdemandforecasts,moreefficientroutingwithvisualizationandreal-timetrackingduringshipments,andhighlyoptimizeddistributionnetworkmanagement.DecisionScienceBigdataanalyticscanintegratedatafrommultiplecommunicationchannels(e.g.phone,email,instantmessage)andassistcustomerservicepersonnelinunderstandingthecontextofcustomerproblemsholisticallyandaddressingproblemsquickly.Howcompaniescompareondigitalbusinesstransformation?FourPathwaysforTransformationStandardizefirstMovecompaniesfromtheSilosandComplexityquadranttotheindustrializedquadrant.RelyonbuildingaplatformmindsetwithAPI-enabledservices.ImprovecustomerexperiencefirstMovefromtheSilosandComplexitytotheIntegratedExperiencequadrant.Developnewattractiveoffers,buildmobileappsandwebsites,improvecallcenters,andempowerrelationshipmanagers.TakestairstepsAlternatetheirfocusfromimprovingcustomerexperiencetoimprovingoperationsandthenbackagain.Createaneworganization.Allowanenterprisetobuilditscustomerbase,people,culture,processes,andsystemsfromscratchtobefuture-ready.BigData2.0(2005-2014)Bigdata2.0isdrivenbyWeb2.0andthesocialmediaphenomenon.Web2.0referstoawebparadigmthatevolvedfromthewebtechnologiesofthe1990sandallowedwebuserstointeractwithwebsitesandcontributetheirowncontenttothewebsites.BigData1.0(1994-2004)Bigdata1.0coincideswiththeadventofe-commercein1994,duringwhichtimeonlinefirmswerethemaincontributorsthewebcontent.User-generatedcontentwasonlyamarginalpartofwebcontentduetot
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年08月興業(yè)銀行南昌分行2024校園招考筆試歷年參考題庫附帶答案詳解
- 客服培訓(xùn)的內(nèi)容
- 2024年08月浙江浙江泰隆商業(yè)銀行社會招考(824)筆試歷年參考題庫附帶答案詳解
- 2025至2031年中國少先隊隊鼓行業(yè)投資前景及策略咨詢研究報告
- 2025至2031年中國左旋甲狀腺素行業(yè)投資前景及策略咨詢研究報告
- 2025至2031年中國超高頻程控衰減器行業(yè)投資前景及策略咨詢研究報告
- 2024年拆胎機項目可行性研究報告
- 2024年08月江蘇2024屆平安銀行校園招考(南通)筆試歷年參考題庫附帶答案詳解
- 2025至2031年中國安全報警器行業(yè)投資前景及策略咨詢研究報告
- 2024至2030年鉛筆刨項目投資價值分析報告
- 《如何調(diào)節(jié)情緒》課件
- 振動試驗大綱模板
- 隨班就讀評價表
- 清理化糞池施工方案
- 中國地理空白圖(政區(qū)、分省輪廓、地形、鐵路空白圖)-(3)1
- 猜歌名教學(xué)講解課件
- 應(yīng)急避難場所項目建議書
- 大型醫(yī)院耗材管理SPD系統(tǒng)
- 浙教版初二上冊英語知識點總結(jié)
- 全國礦業(yè)權(quán)評估師資格考試試卷及答案
- 配網(wǎng)工程安全質(zhì)量監(jiān)理方案
評論
0/150
提交評論