版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023年四川省達州市普通高校對口單招高等數(shù)學一自考預測試題(含答案)學校:________班級:________姓名:________考號:________
一、單選題(20題)1.設(shè)f(x)在點x0的某鄰域內(nèi)有定義,且,則f'(x0)等于().A.-1B.-1/2C.1/2D.1
2.下列各式中正確的是()。
A.
B.
C.
D.
3.構(gòu)件承載能力不包括()。
A.強度B.剛度C.穩(wěn)定性D.平衡性
4.
5.A.6YB.6XYC.3XD.3X^2
6.A.f(x)+CB.f'(x)+CC.f(x)D.f'(x)
7.設(shè)函數(shù)f(x)=COS2x,則f′(x)=().
A.2sin2x
B.-2sin2x
C.sin2x
D.-sin2x
8.A.A.橢球面B.圓錐面C.旋轉(zhuǎn)拋物面D.柱面
9.f(x)在[a,b]上連續(xù)是f(x)在[a,b]上有界的()條件。A.充分B.必要C.充要D.非充分也非必要
10.
11.過點(1,0,O),(0,1,O),(0,0,1)的平面方程為()A.A.x+y+z=1
B.2x+y+z=1
C.x+2y+z=1
D.x+y+2z=1
12.
13.
14.
15.16.A.A.
B.
C.
D.
17.設(shè)∫0xf(t)dt=xsinx,則f(x)=()A.sinx+xcosxB.sinx-xcosxC.xcosx-sinxD.-(sinx+xcosx)18.A.A.0
B.
C.arctanx
D.
19.設(shè)y=cos4x,則dy=()。A.4sin4xdxB.-4sin4xdxC.(1/4)sin4xdxD.-(1/4)sin4xdx
20.
二、填空題(20題)21.22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
=_________.
32.
33.
34.
35.
36.
37.已知∫01f(x)dx=π,則∫01dx∫01f(x)f(y)dy=________。
38.
39.
40.將積分改變積分順序,則I=______.
三、計算題(20題)41.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.42.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.43.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.44.45.
46.
47.
48.求微分方程的通解.49.50.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
51.求微分方程y"-4y'+4y=e-2x的通解.
52.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達式;
(2)求S(x)的最大值.
53.54.證明:55.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.56.求曲線在點(1,3)處的切線方程.57.
58.將f(x)=e-2X展開為x的冪級數(shù).59.當x一0時f(x)與sin2x是等價無窮小量,則
60.已知某商品市場需求規(guī)律為Q=100e-0.25p,當p=10時,若價格上漲1%,需求量增(減)百分之幾?
四、解答題(10題)61.設(shè)且f(x)在點x=0處連續(xù)b.
62.用鐵皮做一個容積為V的圓柱形有蓋桶,證明當圓柱的高等于底面直徑時,所使用的鐵皮面積最小。63.
64.
65.
66.
67.68.將展開為x的冪級數(shù).
69.
70.
五、高等數(shù)學(0題)71.當x→0+時,()與x是等價無窮小量。
A.
B.1n(1+x)
C.x2(x+1)
D.
六、解答題(0題)72.
參考答案
1.B由導數(shù)的定義可知
可知,故應(yīng)選B。
2.B
3.D
4.C
5.D
6.C
7.B由復合函數(shù)求導法則,可得
故選B.
8.C本題考查的知識點為二次曲面的方程.
9.A定理:閉區(qū)間上的連續(xù)函數(shù)必有界;反之不一定。
10.C
11.A
12.B
13.A解析:
14.D
15.C
16.C
17.A
18.A
19.B
20.C
21.22.12dx+4dy.
本題考查的知識點為求函數(shù)在一點處的全微分.
23.
解析:24.本題考查的知識點為無窮小的性質(zhì)。
25.
26.3x+y-5z+1=03x+y-5z+1=0解析:
27.
28.29.0.
本題考查的知識點為連續(xù)函數(shù)在閉區(qū)間上的最小值問題.
通常求解的思路為:
30.
31.。
32.x=-3
33.e-634.2本題考查的知識點為二重積分的幾何意義.
由二重積分的幾何意義可知,所給二重積分的值等于長為1,寬為2的矩形的面積值,故為2.或由二重積分計算可知
35.x/1=y/2=z/-1
36.
37.π2因為∫01f(x)dx=π,所以∫01dx∫01(x)f(y)dy=∫01f(x)dx∫01f(y)dy=(∫01f(x)dx)2=π2。
38.
39.
40.
41.
42.由二重積分物理意義知
43.
列表:
說明
44.
45.
則
46.
47.
48.
49.
50.函數(shù)的定義域為
注意
51.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
52.
53.
54.
55.
56.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
57.由一階線性微分方程通解公式有
58.59.由等價無窮小量的定義可知
60.需求規(guī)律為Q=100ep-2.25p
∴當P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當P=10時,價格上漲1%需求量減少2.5%
61.62.設(shè)圓柱形的底面半徑為r,高為h,則V=πr2h。所用鐵皮面積S=2πr2+2rh。于是由實際問題得,S存在最小值,即當圓柱的高等于底面直徑時,所使用的鐵皮面積最小。
63.
64.
65.
66.
67.
68.本題考查的知識點為將函數(shù)展開為x的冪級數(shù).將函數(shù)展開為x的冪級數(shù)通常利用
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年碎石運輸企業(yè)財務(wù)管理合同模板3篇
- 2024貨車租賃合同范文
- 2024年版汽車零部件生產(chǎn)與供應(yīng)合同
- 2024建筑勞務(wù)給排水分包合同范本
- 2024建筑工地鋼筋原材料采購與驗收合同
- 2025年度新型建筑材料銷售合作合同范本3篇
- 2024食堂食材采購與勞務(wù)承包合作協(xié)議3篇
- 2024飼料行業(yè)市場調(diào)研與數(shù)據(jù)分析服務(wù)合同范本3篇
- 2024校服采購合同模板
- 2025年度電網(wǎng)接入與轉(zhuǎn)供電服務(wù)合同3篇
- 2024年小區(qū)地下車位租賃合同
- 2024年陜西省中考語文試卷附答案
- 抖音火花合同電子版獲取教程
- 2024年刑法知識考試題庫附參考答案(典型題)
- 第5課《弘揚勞動精神勞模精神工匠精神》第1框《理解勞動精神勞模精神工匠精神》-【中職專用】《職業(yè)道德與法治》同步課堂課件
- 2024年湖南高速鐵路職業(yè)技術(shù)學院單招職業(yè)技能測試題庫及答案解析
- 中醫(yī)藥養(yǎng)生保健服務(wù)方案設(shè)計
- 肺栓塞指南解讀
- 2024年廣西南寧金融投資集團有限責任公司招聘筆試參考題庫含答案解析
- 數(shù)據(jù)分析控制程序(修改)-y
- 七年級數(shù)學(上)有理數(shù)混合運算100題(含答案)
評論
0/150
提交評論