2023年四川省雅安市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第1頁
2023年四川省雅安市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第2頁
2023年四川省雅安市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第3頁
2023年四川省雅安市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第4頁
2023年四川省雅安市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023年四川省雅安市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.

2.輥軸支座(又稱滾動(dòng)支座)屬于()。

A.柔索約束B.光滑面約束C.光滑圓柱鉸鏈約束D.連桿約束

3.設(shè)lnx是f(x)的一個(gè)原函數(shù),則f'(x)=A.-1/x

B.1/x

C.-1/x2

D.1/x2

4.

5.以下結(jié)論正確的是().

A.

B.

C.

D.

6.A.A.

B.

C.

D.

7.等于().A.A.0

B.

C.

D.∞

8.設(shè)函數(shù)z=sin(xy2),則等于()。A.cos(xy2)

B.xy2cos(xy2)

C.2xyeos(xy2)

D.y2cos(xy2)

9.

A.

B.

C.

D.

10.

11.若級(jí)數(shù)在x=-1處收斂,則此級(jí)數(shù)在x=2處

A.發(fā)散B.條件收斂C.絕對(duì)收斂D.不能確定

12.若,則下列命題中正確的有()。A.

B.

C.

D.

13.

14.

A.sinx+C

B.cosx+C

C.-sinx+C

D.-COSx+C

15.

16.

17.A.f(x)+CB.f'(x)+CC.f(x)D.f'(x)

18.

19.A.

B.

C.-cotx+C

D.cotx+C

20.

二、填空題(20題)21.設(shè)f(x)=sin(lnx),求f(x)=__________.

22.

23.

24.25.過點(diǎn)M0(1,-2,0)且與直線垂直的平面方程為______.

26.

27.

28.

29.

30.

31.

32.

33.

34.過原點(diǎn)且與直線垂直的平面方程為______.

35.

36.

37.

38.

39.

40.

三、計(jì)算題(20題)41.42.求曲線在點(diǎn)(1,3)處的切線方程.43.

44.

45.證明:46.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.

47.

48.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.49.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.50.將f(x)=e-2X展開為x的冪級(jí)數(shù).

51.求微分方程y"-4y'+4y=e-2x的通解.

52.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則

53.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

54.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).55.求微分方程的通解.56.

57.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

58.

59.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.60.四、解答題(10題)61.62.63.(本題滿分8分)

64.

65.

66.67.

68.

69.70.

五、高等數(shù)學(xué)(0題)71.=()。A.

B.

C.

D.

六、解答題(0題)72.

參考答案

1.C解析:

2.C

3.C

4.B

5.C

6.B本題考查的知識(shí)點(diǎn)為定積分運(yùn)算.

因此選B.

7.A

8.D本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的運(yùn)算。由z=sin(xy2),知可知應(yīng)選D。

9.D

故選D.

10.C

11.C由題意知,級(jí)數(shù)收斂半徑R≥2,則x=2在收斂域內(nèi)部,故其為絕對(duì)收斂.

12.B本題考查的知識(shí)點(diǎn)為級(jí)數(shù)收斂性的定義。

13.A

14.A

15.D解析:

16.D

17.C

18.C

19.C本題考查的知識(shí)點(diǎn)為不定積分基本公式.

20.B

21.

22.0.

本題考查的知識(shí)點(diǎn)為定積分的性質(zhì).

積分區(qū)間為對(duì)稱區(qū)間,被積函數(shù)為奇函數(shù),因此

23.2/3

24.25.3(x-1)-(y+2)+z=0(或3x-y+z=5)本題考查的知識(shí)點(diǎn)為平面與直線的方程.

由題設(shè)條件可知應(yīng)該利用點(diǎn)法式方程來確定所求平面方程.

所給直線l的方向向量s=(3,-1,1).若所求平面π垂直于直線l,則平面π的法向量n∥s,不妨取n=s=(3,-1,1).則由平面的點(diǎn)法式方程可知

3(x-1)-[y-(-2)]+(z-0)=0,

即3(x-1)-(y+2)+z=0

為所求平面方程.

或?qū)憺?x-y+z-5=0.

上述兩個(gè)結(jié)果都正確,前者3(x-1)-(y+2)z=0稱為平面的點(diǎn)法式方程,而后者3x-y+z-5=0稱為平面的一般式方程.

26.y+3x2+x27.1;本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的計(jì)算.

28.

29.本題考查的知識(shí)點(diǎn)為函數(shù)商的求導(dǎo)運(yùn)算.

考生只需熟記導(dǎo)數(shù)運(yùn)算的法則

30.1

31.1/4

32.

33.34.2x+y-3z=0本題考查的知識(shí)點(diǎn)為平面方程和平面與直線的關(guān)系.

由于已知直線與所求平面垂直,可知所給直線的方向向量s平行于所求平面的法向量n.由于s=(2,1,-3),因此可取n=(2,1,-3).由于平面過原點(diǎn),由平面的點(diǎn)法式方程,可知所求平面方程為2x+y-3z=0

35.

36.

37.F'(x)38.本題考查的知識(shí)點(diǎn)為求二元函數(shù)的全微分.

通常求二元函數(shù)的全微分的思路為:

39.

40.(1+x)2

41.

42.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

43.

44.

45.

46.

47.

48.

49.函數(shù)的定義域?yàn)?/p>

注意

50.

51.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

52.由等價(jià)無窮小量的定義可知

53.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

54.

列表:

說明

55.56.由一階線性微分方程通解公式有

57.

58.

59.由二重積分物理意義知

60.

61.

62.63.本題考查的知識(shí)點(diǎn)為極限運(yùn)算.

解法1

解法2

在極限運(yùn)算中,先進(jìn)行等價(jià)無窮小代換,這是首要問題.應(yīng)引起注意.

64.

65.

66.解:

67.

68.本題考查的知識(shí)點(diǎn)為定積分的幾何應(yīng)用:利用定積分表示平面圖形的面積;利用定積分求繞坐標(biāo)軸旋轉(zhuǎn)而成旋轉(zhuǎn)體體積.

所給平面圖形如圖4—1中陰影部分所示,

注這是常見的考

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論