2023年山東省青島市成考專升本高等數(shù)學一自考模擬考試(含答案)_第1頁
2023年山東省青島市成考專升本高等數(shù)學一自考模擬考試(含答案)_第2頁
2023年山東省青島市成考專升本高等數(shù)學一自考模擬考試(含答案)_第3頁
2023年山東省青島市成考專升本高等數(shù)學一自考模擬考試(含答案)_第4頁
2023年山東省青島市成考專升本高等數(shù)學一自考模擬考試(含答案)_第5頁
已閱讀5頁,還剩36頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023年山東省青島市成考專升本高等數(shù)學一自考模擬考試(含答案)學校:________班級:________姓名:________考號:________

一、單選題(50題)1.

A.2B.1C.1/2D.0

2.下列命題中正確的為

A.若x0為f(x)的極值點,則必有f'(x0)=0

B.若f'(x)=0,則點x0必為f(x)的極值點

C.若f'(x0)≠0,則點x0必定不為f(x)的極值點

D.若f(x)在點x0處可導,且點x0為f(x)的極值點,則必有f'(x0)=0

3.

4.

5.

6.設(shè)f(x)在點x0的某鄰域內(nèi)有定義,且,則f'(x0)等于().A.-1B.-1/2C.1/2D.17.級數(shù)(k為非零正常數(shù))().A.A.條件收斂B.絕對收斂C.收斂性與k有關(guān)D.發(fā)散

8.

9.

10.設(shè)y1,y2為二階線性常系數(shù)微分方程y"+p1y+p2y=0的兩個特解,則C1y1+C2y2()A.為所給方程的解,但不是通解B.為所給方程的解,但不一定是通解C.為所給方程的通解D.不為所給方程的解

11.建立共同愿景屬于()的管理觀念。

A.科學管理B.企業(yè)再造C.學習型組織D.目標管理12.函數(shù)y=x3-3x的單調(diào)遞減區(qū)間為()A.A.(-∞,-1]

B.[-1,1]

C.[1,+∞)

D.(-∞,+∞)

13.

14.已知y=ksin2x的一個原函數(shù)為y=cos2x,則k等于()。A.2B.1C.-1D.-215.設(shè)f(x)=x3+x,則等于()。A.0

B.8

C.

D.

16.方程y"+3y'=x2的待定特解y*應取().A.A.AxB.Ax2+Bx+CC.Ax2D.x(Ax2+Bx+C)

17.

18.A.A.

B.

C.

D.

19.

20.設(shè)函數(shù)y=(2+x)3,則y'=

A.(2+x)2

B.3(2+x)2

C.(2+x)4

D.3(2+x)4

21.A.A.xy

B.yxy

C.(x+1)yln(x+1)

D.y(x+1)y-1

22.設(shè)f(x)在點x0處連續(xù),則下列命題中正確的是().A.A.f(x)在點x0必定可導B.f(x)在點x0必定不可導C.必定存在D.可能不存在

23.

A.2x-2B.2y+4C.2x+2y+2D.2y+4+x2-2x

24.

25.A.A.

B.B.

C.C.

D.D.

26.

27.A.exln2

B.e2xln2

C.ex+ln2

D.e2x+ln2

28.A.A.為所給方程的解,但不是通解

B.為所給方程的解,但不-定是通解

C.為所給方程的通解

D.不為所給方程的解

29.()A.A.(-∞,-3)和(3,+∞)

B.(-3,3)

C.(-∞,O)和(0,+∞)

D.(-3,0)和(0,3)

30.圖示懸臂梁,若已知截面B的撓度和轉(zhuǎn)角分別為vB和θB,則C端撓度為()。

A.vC=2uB

B.uC=θBα

C.vC=uB+θBα

D.vC=vB

31.

32.下列等式成立的是

A.A.

B.B.

C.C.

D.D.

33.平衡物體發(fā)生自鎖現(xiàn)象的條件為()。

A.0≤α≤φ

B.0≤φ≤α

C.0<α<90。

D.0<φ<90。

34.

35.當x→0時,3x是x的().

A.高階無窮小量B.等價無窮小量C.同階無窮小量,但不是等價無窮小量D.低階無窮小量36.當x→0時,x2是2x的A.A.低階無窮小B.等價無窮小C.同階但不等價無窮小D.高階無窮小

37.

38.A.0或1B.0或-1C.0或2D.1或-139.已知y=ksin2x的一個原函數(shù)為y=cos2x,則k等于().A.A.2B.1C.-lD.-240.

41.設(shè)z=y2x,則等于().A.2xy2x-11

B.2y2x

C.y2xlny

D.2y2xlny

42.

43.若收斂,則下面命題正確的是()A.A.

B.

C.

D.

44.()。A.3B.2C.1D.045.下列關(guān)系式中正確的有()。A.

B.

C.

D.

46.

47.已知函數(shù)f(x)的定義域是[一1,1],則f(x一1)的定義域為()。

A.[一1,1]B.[0,2]C.[0,1]D.[1,2]48.設(shè)lnx是f(x)的一個原函數(shù),則f'(x)=()。A.

B.

C.

D.

49.

50.A.A.1/2B.1C.2D.e二、填空題(20題)51.函數(shù)的間斷點為______.52.53.設(shè)y=2x+sin2,則y'=______.54.55.

56.

57.

58.

59.已知當x→0時,-1與x2是等價無窮小,則a=________。

60.

61.

62.

63.

64.設(shè),則y'=______。

65.

66.67.函數(shù)y=x3-2x+1在區(qū)間[1,2]上的最小值為______.

68.

69.設(shè)sinx為f(x)的原函數(shù),則f(x)=________。70.三、計算題(20題)71.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.72.求微分方程的通解.

73.已知某商品市場需求規(guī)律為Q=100e-0.25p,當p=10時,若價格上漲1%,需求量增(減)百分之幾?

74.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達式;

(2)求S(x)的最大值.

75.求曲線在點(1,3)處的切線方程.76.77.當x一0時f(x)與sin2x是等價無窮小量,則78.

79.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.80.81.

82.求微分方程y"-4y'+4y=e-2x的通解.

83.將f(x)=e-2X展開為x的冪級數(shù).

84.

85.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.86.

87.

88.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.89.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.90.證明:四、解答題(10題)91.若y=y(x)由方程y=x2+y2,求dy。

92.93.

94.95.

96.求二元函數(shù)z=x2-xy+y2+x+y的極值。

97.

98.求由曲線y2=(x-1)3和直線x=2所圍成的圖形繞x軸旋轉(zhuǎn)所得的旋轉(zhuǎn)體的體積.

99.

100.

五、高等數(shù)學(0題)101.討論y=xe-x的增減性,凹凸性,極值,拐點。

六、解答題(0題)102.

參考答案

1.D本題考查的知識點為重要極限公式與無窮小量的性質(zhì).

2.D解析:由極值的必要條件知D正確。

y=|x|在x=0處取得極值,但不可導,知A與C不正確。

y=x3在x=0處導數(shù)為0,但x0=0不為它的極值點,可知B不正確。因此選D。

3.A

4.D

5.C

6.B由導數(shù)的定義可知

可知,故應選B。

7.A

8.B解析:

9.A

10.B如果y1,y2這兩個特解是線性無關(guān)的,即≠C,則C1y1+C2y2是其方程的通解。現(xiàn)在題設(shè)中沒有指出是否線性無關(guān),所以可能是通解,也可能不是通解,故選B。

11.C解析:建立共同愿景屬于學習型組織的管理觀念。

12.B

13.D解析:

14.D本題考查的知識點為可變限積分求導。由原函數(shù)的定義可知(cos2x)'=ksin2x,而(cos2x)'=(-sin2x)·2,可知k=-2。

15.A本題考查的知識點為定積分的對稱性質(zhì)。由于所給定積分的積分區(qū)間為對稱區(qū)間,被積函數(shù)f(x)=x3+x為連續(xù)的奇函數(shù)。由定積分的對稱性質(zhì)可知

可知應選A。

16.D本題考查的知識點為二階常系數(shù)線性微分方程特解y*的取法.

由于相應齊次方程為y"+3y'0,

其特征方程為r2+3r=0,

特征根為r1=0,r2=-3,

自由項f(x)=x2,相應于Pn(x)eαx中α=0為單特征根,因此應設(shè)

故應選D.

17.B

18.Dy=e-2x,y'=(e-2x)'=e-2x(-2x)'=-2e-2x,dy=y'dx=-2e-2xdx,故選D。

19.A

20.B本題考查了復合函數(shù)求導的知識點。因為y=(2+x)3,所以y'=3(2+x)2·(2+x)'=3(2+x)2.

21.C

22.C本題考查的知識點為極限、連續(xù)與可導性的關(guān)系.

函數(shù)f(x)在點x0可導,則f(x)在點x0必連續(xù).

函數(shù)f(x)在點x0連續(xù),則必定存在.

函數(shù)f(x)在點x0連續(xù),f(x)在點x0不一定可導.

函數(shù)f(x)在點x0不連續(xù),則f(x)在點x0必定不可導.

這些性質(zhì)考生應該熟記.由這些性質(zhì)可知本例應該選C.

23.B解析:

24.C

25.C本題考查了二重積分的積分區(qū)域的表示的知識點.

26.A

27.B本題考查了一階線性齊次方程的知識點。

因f'(x)=f(x)·2,即y'=2y,此為常系數(shù)一階線性齊次方程,其特征根為r=2,所以其通解為y=Ce2x,又當x=0時,f(0)=ln2,所以C=In2,故f(x)=e2xln2.

注:方程y'=2y求解時也可用變量分離.

28.B本題考查的知識點為線性常系數(shù)微分方程解的結(jié)構(gòu).

29.D

30.C

31.B解析:

32.C本題考查了函數(shù)的極限的知識點

33.A

34.A解析:

35.C本題考查的知識點為無窮小量階的比較.

應依定義考察

由此可知,當x→0時,3x是x的同階無窮小量,但不是等價無窮小量,故知應選C.

本題應明確的是:考察當x→x0時無窮小量β與無窮小量α的階的關(guān)系時,要判定極限

這里是以α為“基本量”,考生要特別注意此點,才能避免錯誤.

36.D

37.B

38.A

39.D本題考查的知識點為原函數(shù)的概念、復合函數(shù)求導.

40.D

41.D本題考查的知識點為偏導數(shù)的運算.

z=y2x,若求,則需將z認定為指數(shù)函數(shù).從而有

可知應選D.

42.D

43.D本題考查的知識點為級數(shù)的基本性質(zhì).

由級數(shù)收斂的必要條件:若收斂,則必有,可知D正確.而A,B,C都不正確.

本題常有考生選取C,這是由于考生將級數(shù)收斂的定義存在,其中誤認作是un,這屬于概念不清楚而導致的錯誤.

44.A

45.B本題考查的知識點為定積分的性質(zhì).

由于x,x2都為連續(xù)函數(shù),因此與都存在。又由于0<x<1時,x>x2,因此

可知應選B。

46.B

47.B∵一1≤x一1≤1∴0≤x≤2。

48.C

49.C解析:

50.C51.本題考查的知識點為判定函數(shù)的間斷點.

僅當,即x=±1時,函數(shù)沒有定義,因此x=±1為函數(shù)的間斷點。

52.53.2xln2本題考查的知識點為初等函數(shù)的求導運算.

本題需利用導數(shù)的四則運算法則求解.

Y'=(2x+sin2)'=(2x)'+(sin2)'=2xln2.

本題中常見的錯誤有

(sin2)'=cos2.

這是由于誤將sin2認作sinx,事實上sin2為一個常數(shù),而常數(shù)的導數(shù)為0,即

(sin2)'=0.

相仿(cos3)'=0,(ln5)'=0,(e1/2)'=0等.

請考生注意,不論以什么函數(shù)形式出現(xiàn),只要是常數(shù),它的導數(shù)必定為0.54.本題考查的知識點為平面方程和平面與直線的關(guān)系.由于已知直線與所求平面垂直,可知所給直線的方向向量s平行于所求平面的法向量n.由于s=(2,1,一3),因此可取n=(2,1,-3).由于平面過原點,由平面的點法式方程,可知所求平面方程為2x+y一3z=0.

55.

56.

57.

58.11解析:59.當x→0時,-1與x2等價,應滿足所以當a=2時是等價的。

60.

61.y=xe+Cy=xe+C解析:

62.

解析:

63.64.本題考查的知識點為導數(shù)的運算。

65.2

66.67.0本題考查的知識點為連續(xù)函數(shù)在閉區(qū)間上的最小值問題.

通常求解的思路為:

先求出連續(xù)函數(shù)f(x)在(a,b)內(nèi)的所有駐點x1,…,xk.

比較f(x1),f(x2),…,f(xk),f(a),f(b),其中最大(小)值即為f(x)在[a,b]上的最大(小)值,相應的x即為,(x)在[a,b]上的最大(小)值點.

由y=x3-2x+1,可得

Y'=3x2-2.

令y'=0得y的駐點為,所給駐點皆不在區(qū)間(1,2)內(nèi),且當x∈(1,2)時有

Y'=3x2-2>0.

可知y=x3-2x+1在[1,2]上為單調(diào)增加函數(shù),最小值點為x=1,最小值為f(1)=0.

注:也可以比較f(1),f(2)直接得出其中最小者,即為f(x)在[1,2]上的最小值.

本題中常見的錯誤是,得到駐點和之后,不討論它們是否在區(qū)間(1,2)內(nèi).而是錯誤地比較

從中確定f(x)在[1,2]上的最小值.則會得到錯誤結(jié)論.

68.ln|1-cosx|+Cln|1-cosx|+C解析:69.本題考查的知識點為原函數(shù)的概念。

由于sinx為f(x)的原函數(shù),因此f(x)=(sinx)=cosx。

70.

71.

列表:

說明

72.

73.需求規(guī)律為Q=100ep-2.25p

∴當P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當P=10時,價格上漲1%需求量減少2.5%

74.

75.曲線方程為,點(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點x0處的導數(shù)f′(x0)存在,則表明曲線y=f(x)在點

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論