2023年廣東省佛山市成考專升本高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第1頁(yè)
2023年廣東省佛山市成考專升本高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第2頁(yè)
2023年廣東省佛山市成考專升本高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第3頁(yè)
2023年廣東省佛山市成考專升本高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第4頁(yè)
2023年廣東省佛山市成考專升本高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩32頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年廣東省佛山市成考專升本高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(50題)1.已知函數(shù)f(x)的定義域是[一1,1],則f(x一1)的定義域?yàn)?)。

A.[一1,1]B.[0,2]C.[0,1]D.[1,2]

2.微分方程y'+y=0的通解為()。A.y=ex

B.y=e-x

C.y=Cex

D.y=Ce-x

3.()A.A.sinx+C

B.cosx+C

C.-sinx+C

D.-cosx+C

4.等于()A.A.

B.

C.

D.

5.設(shè)函數(shù)f(x)在點(diǎn)x0。處連續(xù),則下列結(jié)論正確的是().A.A.

B.

C.

D.

6.()。A.

B.

C.

D.

7.A.

B.

C.

D.

8.

9.

A.2x+1B.2xy+1C.x2+1D.2xy

10.

11.

12.

13.

14.設(shè)函數(shù)f(x)=COS2x,則f′(x)=().

A.2sin2x

B.-2sin2x

C.sin2x

D.-sin2x

15.當(dāng)x→0時(shí),sinx是sinx的等價(jià)無(wú)窮小量,則k=()A.0B.1C.2D.3

16.下列命題不正確的是()。

A.兩個(gè)無(wú)窮大量之和仍為無(wú)窮大量

B.上萬(wàn)個(gè)無(wú)窮小量之和仍為無(wú)窮小量

C.兩個(gè)無(wú)窮大量之積仍為無(wú)窮大量

D.兩個(gè)有界變量之和仍為有界變量

17.設(shè)y=cos4x,則dy=()。A.

B.

C.

D.

18.

19.

20.

21.

22.設(shè)f(x)=x3+x,則等于()。A.0

B.8

C.

D.

23.

24.微分方程y’-4y=0的特征根為()A.0,4B.-2,2C.-2,4D.2,4

25.

26.。A.

B.

C.

D.

27.A.A.2

B.1

C.1/2e

D.

28.

29.控制工作的實(shí)質(zhì)是()

A.糾正偏差B.衡量成效C.信息反饋D.擬定標(biāo)準(zhǔn)

30.

31.方程x2+y2-2z=0表示的二次曲面是.

A.柱面B.球面C.旋轉(zhuǎn)拋物面D.橢球面32.設(shè)D={(x,y){|x2+y2≤a2,a>0,y≥0),在極坐標(biāo)下二重積分(x2+y2)dxdy可以表示為()A.∫0πdθ∫0ar2dr

B.∫0πdθ∫0ar3drC.D.33.設(shè)函數(shù)在x=0處連續(xù),則等于()。A.2B.1/2C.1D.-2

34.當(dāng)x→0時(shí),與x等價(jià)的無(wú)窮小量是

A.A.

B.ln(1+x)

C.C.

D.x2(x+1)

35.A.沒有漸近線B.僅有水平漸近線C.僅有鉛直漸近線D.既有水平漸近線,又有鉛直漸近線

36.設(shè)函數(shù)y=(2+x)3,則y'=

A.(2+x)2

B.3(2+x)2

C.(2+x)4

D.3(2+x)4

37.函數(shù)y=ln(1+x2)的單調(diào)增加區(qū)間是()。A.(-5,5)B.(-∞,0)C.(0,+∞)D.(-∞,+∞)

38.

39.

40.

41.設(shè)f'(x0)=0,f"(x0)<0,則下列結(jié)論必定正確的是().A.A.x0為f(x)的極大值點(diǎn)

B.x0為f(x)的極小值點(diǎn)

C.x0不為f(x)的極值點(diǎn)

D.x0可能不為f(x)的極值點(diǎn)

42.

43.微分方程y′-y=0的通解為().

A.y=ex+C

B.y=e-x+C

C.y=Cex

D.y=Ce-x

44.

45.

46.為了提高混凝土的抗拉強(qiáng)度,可在梁中配置鋼筋。若矩形截面梁的彎矩圖如圖所示,梁中鋼筋(圖中虛線所示)配置最為合理的是()。

A.

B.

C.

D.

47.設(shè)函數(shù)f(x)滿足f'(sin2x=cos2x,且f(0)=0,則f(x)=()A.

B.

C.

D.

48.

49.

A.-ex

B.-e-x

C.e-x

D.ex

50.平面π1:x-2y+3z+1=0,π2:2x+y+2=0的位置關(guān)系為().A.A.垂直B.斜交C.平行D.重合二、填空題(20題)51.

52.

53.54.55.設(shè)函數(shù)y=x2+sinx,則dy______.

56.

57.

58.59.60.

61.

62.

63.

64.

則b__________.

65.

66.

67.

68.曲線y=x3-3x2-x的拐點(diǎn)坐標(biāo)為____。

69.

70.

三、計(jì)算題(20題)71.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

72.求曲線在點(diǎn)(1,3)處的切線方程.73.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則74.75.

76.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.

77.

78.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.79.80.

81.

82.將f(x)=e-2X展開為x的冪級(jí)數(shù).

83.求微分方程y"-4y'+4y=e-2x的通解.

84.

85.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).86.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.87.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.88.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

89.求微分方程的通解.90.證明:四、解答題(10題)91.

92.

93.

94.

95.

96.

97.

98.

99.求y"+2y'+y=2ex的通解.

100.

五、高等數(shù)學(xué)(0題)101.

________.

六、解答題(0題)102.求函數(shù)f(x,y)=e2x(x+y2+2y)的極值.

參考答案

1.B∵一1≤x一1≤1∴0≤x≤2。

2.D可以將方程認(rèn)作可分離變量方程;也可以將方程認(rèn)作一階線性微分方程;還可以仿二階線性常系數(shù)齊次微分方程,并作為特例求解。解法1將方程認(rèn)作可分離變量方程。分離變量

兩端分別積分

或y=Ce-x解法2將方程認(rèn)作一階線性微分方程.由通解公式可得解法3認(rèn)作二階常系數(shù)線性齊次微分方程特例求解:特征方程為r+1=0,特征根為r=-1,方程通解為y=Ce-x。

3.A

4.C本題考查的知識(shí)點(diǎn)為不定積分基本公式.

由于

可知應(yīng)選C.

5.D本題考查的知識(shí)點(diǎn)為連續(xù)性的定義,連續(xù)性與極限、可導(dǎo)性的關(guān)系.由函數(shù)連續(xù)性的定義:若在x0處f(x)連續(xù),則可知選項(xiàng)D正確,C不正確.由于連續(xù)性并不能保證f(x)的可導(dǎo)性,可知A不正確.

6.A

7.D本題考查的知識(shí)點(diǎn)為牛頓一萊布尼茨公式和定積分的換元法。因此選D。

8.D

9.B

10.A

11.A

12.A解析:

13.B

14.B由復(fù)合函數(shù)求導(dǎo)法則,可得

故選B.

15.B由等價(jià)無(wú)窮小量的概念,可知=1,從而k=1,故選B。也可以利用等價(jià)無(wú)窮小量的另一種表述形式,由于當(dāng)x→0時(shí),有sinx~x,由題設(shè)知當(dāng)x→0時(shí),kx~sinx,從而kx~x,可知k=1。

16.A∵f(x)→∞;g(x)→∞∴f(x)+g(x)是不定型,不一定是無(wú)窮大。

17.B

18.D

19.C解析:

20.A

21.C

22.A本題考查的知識(shí)點(diǎn)為定積分的對(duì)稱性質(zhì)。由于所給定積分的積分區(qū)間為對(duì)稱區(qū)間,被積函數(shù)f(x)=x3+x為連續(xù)的奇函數(shù)。由定積分的對(duì)稱性質(zhì)可知

可知應(yīng)選A。

23.D

24.B由r2-4=0,r1=2,r2=-2,知y"-4y=0的特征根為2,-2,故選B.

25.C解析:

26.A本題考查的知識(shí)點(diǎn)為定積分換元積分法。

因此選A。

27.B

28.C解析:

29.A解析:控制工作的實(shí)質(zhì)是糾正偏差。

30.D解析:

31.C本題考查了二次曲面的知識(shí)點(diǎn)。x2+y2-2z=0可化為x2/2+y2/2=z,故表示的是旋轉(zhuǎn)拋物面。

32.B因?yàn)镈:x2+y2≤a2,a>0,y≥0,令則有r2≤a2,0≤r≤a,0≤θ≤π,所以(x2+y2)dxdy=∫0πdθ∫0ar2.rdr=∫0πdθ∫0ar3.rdr故選B。

33.C本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念。由于f(x)在點(diǎn)x=0連續(xù),因此,故a=1,應(yīng)選C。

34.B本題考查了等價(jià)無(wú)窮小量的知識(shí)點(diǎn)

35.D本題考查了曲線的漸近線的知識(shí)點(diǎn),

36.B本題考查了復(fù)合函數(shù)求導(dǎo)的知識(shí)點(diǎn)。因?yàn)閥=(2+x)3,所以y'=3(2+x)2·(2+x)'=3(2+x)2.

37.C本題考查的知識(shí)點(diǎn)為判定函數(shù)的單調(diào)性。

y=ln(1+x2)的定義域?yàn)?-∞,+∞)。

當(dāng)x>0時(shí),y'>0,y為單調(diào)增加函數(shù),

當(dāng)x<0時(shí),y'<0,y為單調(diào)減少函數(shù)。

可知函數(shù)y=ln(1+x2)的單調(diào)增加區(qū)間是(0,+∞),故應(yīng)選C。

38.D

39.C

40.A解析:

41.A本題考查的知識(shí)點(diǎn)為函數(shù)極值的第二充分條件.

由極值的第二充分條件可知應(yīng)選A.

42.D解析:

43.C所給方程為可分離變量方程.

44.C

45.A

46.D

47.D

48.B

49.C由可變上限積分求導(dǎo)公式有,因此選C.

50.A本題考查的知識(shí)點(diǎn)為兩平面的關(guān)系.

兩平面的關(guān)系可由兩平面的法向量n1,n2間的關(guān)系確定.

51.1/21/2解析:

52.

53.

54.55.(2x+cosx)dx;本題考查的知識(shí)點(diǎn)為微分運(yùn)算.

解法1利用dy=y'dx.由于y'=(x2+sinx)'=2x+cosx,

可知dy=(2x+cosx)dx.

解法2利用微分運(yùn)算法則dy=d(x2+sinx)=dx2+dsinx=(2x+cosx)dx.

56.11解析:

57.2xy(x+y)+3

58.

本題考查的知識(shí)點(diǎn)為:參數(shù)方程形式的函數(shù)求導(dǎo).

59.f(x)本題考查了導(dǎo)數(shù)的原函數(shù)的知識(shí)點(diǎn)。

60.

61.

62.

63.11解析:

64.所以b=2。所以b=2。

65.

解析:

66.(-∞0]

67.(2x-y)dx+(2y-x)dy(2x-y)dx+(2y-x)dy解析:68.(1,-1)

69.11解析:

70.2m

71.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%72.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

73.由等價(jià)無(wú)窮小量的定義可知

74.

75.

76.由二重積分物理意義知

77.

78.

79.

80.

81.

82.

83.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

84.由一階線性微分方程通解公式有

85.

列表:

說(shuō)明

86.

87.函數(shù)的定義域?yàn)?/p>

注意

88.

8

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論