下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
山東省濱州市惠民縣清河鎮(zhèn)鄉(xiāng)中學(xué)2021年高一數(shù)學(xué)文聯(lián)考試卷含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.如果函數(shù)的定義域為全體實數(shù)集R,那么實數(shù)a的取值范圍是A.[0,4]
B.[0,4)C.[4,+∞)
D.(0,4)參考答案:A2.如圖,有一圓盤,其中陰影部分的圓心角為45°,向圓盤內(nèi)投鏢,如果某人每次都投入圓盤內(nèi),那么他投中陰影部分的概率為()參考答案:A3.為了得到函數(shù)的圖象,可以將函數(shù)的圖象(
)A.向右平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向左平移個單位長度參考答案:B試題分析:∵,∴將函數(shù)的圖象向右平移個單位長度.故選B.考點:函數(shù)的圖象變換.4.給出下列六個命題:(1)兩個向量相等,則它們的起點相同,終點相同;(2)若,則;(3)若=,則四點A、B、C、D構(gòu)成平行四邊形;(4)在中,一定有=;(5)若,,則;(6)若,,則.其中不正確的個數(shù)是(
)
2
;
3
;
4;
5;參考答案:C略5.已知為等差數(shù)列,若,則的值為(
)A. B. C.
D.參考答案:C略6.某班設(shè)計了一個八邊形的班徽(如圖),它由腰長為1,頂角為的四個等腰三角形,及其底邊構(gòu)成的正方形所組成,該八邊形的面積為A.; B.C. D.參考答案:A【詳解】試題分析:利用余弦定理求出正方形面積;利用三角形知識得出四個等腰三角形面積;故八邊形面積.故本題正確答案A.考點:余弦定理和三角形面積的求解.【方法點晴】本題是一道關(guān)于三角函數(shù)在幾何中的應(yīng)用的題目,掌握正余弦定理是解題的關(guān)鍵;首先根據(jù)三角形面積公式求出個三角形的面積;接下來利用余弦定理可求出正方形的邊長的平方,進(jìn)而得到正方形的面積,最后得到答案.7.(3分)函數(shù)則的值為() A. B. C. D. 18參考答案:C考點: 函數(shù)的值.專題: 計算題;函數(shù)的性質(zhì)及應(yīng)用.分析: 由,由f(3)=32﹣3﹣3=3,能求出的值.解答: ∵,∴f(3)=32﹣3﹣3=3,∴=f()=1﹣()2=,故選C.點評: 本題考查分段函數(shù)的函數(shù)值的求法,是基礎(chǔ)題.解題時要認(rèn)真審題,仔細(xì)解答.8.(5分)在一個幾何體的三視圖中,正視圖和俯視圖如圖所示,則相應(yīng)的側(cè)視圖可以為() A. B. C. D. 參考答案:D考點: 簡單空間圖形的三視圖.專題: 作圖題.分析: 由俯視圖和正視圖可以得到幾何體是一個簡單的組合體,是由一個三棱錐和被軸截面截開的半個圓錐組成,根據(jù)組合體的結(jié)構(gòu)特征,得到組合體的側(cè)視圖.解答: 由俯視圖和正視圖可以得到幾何體是一個簡單的組合體,是由一個三棱錐和被軸截面截開的半個圓錐組成,∴側(cè)視圖是一個中間有分界線的三角形,故選D.點評: 本題考查簡單空間圖形的三視圖,考查由三視圖看出原幾何圖形,再得到余下的三視圖,本題是一個基礎(chǔ)題.9.已知函數(shù)(且)在區(qū)間[0,1]上是x的減函數(shù),則實數(shù)a的取值范圍是(▲)A.(0,1)B.(1,2]
C.(0,2)D.(2,+∞)參考答案:B10.函數(shù)的單調(diào)遞增區(qū)間為A.
B.
C.
D.參考答案:C二、填空題:本大題共7小題,每小題4分,共28分11.設(shè)函數(shù)f(x)=,若函數(shù)f(x)在(a,a+1)遞增,則a的取值范圍是.參考答案:(﹣∞,1]∪[4,+∞)【考點】函數(shù)單調(diào)性的性質(zhì).【分析】求出分段函數(shù)各段的單調(diào)性,再由條件可得a+1≤2或a≥4,解出即可.【解答】解:當(dāng)x≤4時,y=﹣x2+4x=﹣(x﹣2)2+4,則在(﹣∞,2]上遞增,(2,4]上遞減;當(dāng)x>4時,y=log2x在(4,+∞)上遞增.由于函數(shù)f(x)在(a,a+1)遞增,則a+1≤2或a≥4,解得a≥4或a≤1,故答案為:(﹣∞,1]∪[4,+∞).12.已知定義在R上的函數(shù),若在上單調(diào)遞增,則實數(shù)的取值范圍是______▲_______參考答案:13.函數(shù)的定義域是.參考答案:(﹣∞,﹣3)∪(﹣3,0)【考點】函數(shù)的定義域及其求法.【分析】由0指數(shù)冪的底數(shù)不為0,分母中根式內(nèi)部的代數(shù)式大于等于0聯(lián)立不等式組求解.【解答】解:由,解得x<0且x≠﹣3.∴函數(shù)的定義域是:(﹣∞,﹣3)∪(﹣3,0).故答案為:(﹣∞,﹣3)∪(﹣3,0).14.點P(x,y)是﹣60°角終邊與單位圓的交點,則的值為.參考答案:【考點】G9:任意角的三角函數(shù)的定義.【分析】直接利用任意角的三角函數(shù),求解即可.【解答】解:角﹣60°的終邊為點P(x,y),可得:tan(﹣60°)=.故答案為:.15.某班有60名學(xué)生,現(xiàn)要從中抽取一個容量為5的樣本,采用系統(tǒng)抽樣法抽取,將全體學(xué)生隨機(jī)編號為:01,02,……,60,并按編號順序平均分為5組(1-5號,6-10號…),若第二有抽出的號碼為16,則第四組抽取的號碼為___________________.參考答案:40略16.若函數(shù)在(﹣2,4)上的值域為.參考答案:【考點】函數(shù)的值域.【專題】數(shù)形結(jié)合;轉(zhuǎn)化思想;函數(shù)的性質(zhì)及應(yīng)用.【分析】函數(shù)f(x)=1﹣,由于x∈(﹣2,4),利用反比例函數(shù)的單調(diào)性可得∈,即可得出.【解答】解:函數(shù)==1﹣,∵x∈(﹣2,4),∴∈,∴1﹣∈,∴函數(shù)在(﹣2,4)上的值域為∈,故答案為:.【點評】本題考查了反比例函數(shù)的單調(diào)性,考查了變形能力與計算能力,屬于基礎(chǔ)題.17.已知集合A=-1,1,3,B=3,,且BA.則實數(shù)的值是__________.參考答案:±1三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18.(本小題滿分12分)已知定義域為R的函數(shù)是以2為周期的周期函數(shù),當(dāng)時,.(1)求的值;(2)求的解析式;(3)若,求函數(shù)的零點的個數(shù).參考答案:(1).(2)對于任意的,必存在一個,使得,則,.故的解析式為.(3)由得.作出與的圖象,知它們的圖象在上有10個交點,∴方程有10個解,∴函數(shù)的零點的個數(shù)為10.19.已知全集U=R,集合,,求:。參考答案:略20.已知y=f(x)(x∈R)是偶函數(shù),當(dāng)x≥0時,f(x)=x2-2x.(1)求f(x)的解析式;(2)若不等式f(x)≥mx在1≤x≤2時都成立,求m的取值范圍.參考答案:略21.某工廠生產(chǎn)一種機(jī)器的固定成本為5000元,且每生產(chǎn)100部,需要加大投入2500元。對銷售市場進(jìn)行調(diào)查后得知,市場對此產(chǎn)品的需求量為每年500部,已知銷售收入函數(shù)為,其中是產(chǎn)品售出的數(shù)量0≤≤500.
(1)若為年產(chǎn)量,表示利潤,求的解析式(2)當(dāng)年產(chǎn)量為何值時,工廠的年利潤最大?其最大值是多少?參考答案:(1);(2)當(dāng)年產(chǎn)量為475部時,工廠的年利潤最大,其最大值為:(元)略22.已知等腰梯形PDCB中,PB=3,DC=1,PD=BC=,A為PB邊上一點,且PA=1,將△PAD沿AD折起,使平面PAD⊥平面ABCD.(1)求證:平面PAD⊥平面PCD.(2)在線段PB上是否存在一點M,使截面AMC把幾何體分成的兩部分的體積之比為V多面體PDCMA:V三棱錐M﹣ACB=2:1?(3)在M滿足(2)的條件下,判斷PD是否平行于平面AMC.參考答案:【考點】棱柱、棱錐、棱臺的體積;平面與平面垂直的判定.【分析】(1)證明平面與平面垂直是要證明CD⊥面PAD;(2)已知V多面體PDCMA:V三棱錐M﹣ACB體積之比為2:1,求出VM﹣ACB:VP﹣ABCD體積之比,從而得出兩多面體高之比,從而確定M點位置.(3)利用反證法證明當(dāng)M為線段PB的中點時,直線PD與平面AMC不平行.【解答】解:(1)因為PDCB為等腰梯形,PB=3,DC=1,PA=1,則PA⊥AD,CD⊥AD.又因為面PAD⊥面ABCD,面PAD∩面ABCD=AD,CD?面ABCD,故CD⊥面PAD.又因為CD?面PCD,所以平面PAD⊥平面PCD.(2)所求的點M即為線段PB的中點,證明如下:設(shè)三棱錐M﹣ACB的高為h1,四棱錐P﹣ABCD的高為h2當(dāng)M為線段PB的中點時,=.所以=所以截面AMC把幾何體分成的兩部分VPDCMA
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 體育教師招聘協(xié)議模板
- 基礎(chǔ)教育建設(shè)合同范本
- 家電制造保溫板安裝協(xié)議
- 玻璃制造租賃合同
- 滑雪場木地板安裝合同
- 城市屋頂花園廊架施工合同
- 地鐵建設(shè)物探施工合同
- 幕墻制作合同模板
- 生日宴席合同范例
- 脫貧戶信息保密協(xié)議書
- 醫(yī)院老人去世后遺體處理及管理流程
- 電大成本會計機(jī)考判斷題專項試題及答案
- 零星維修工程施工方案
- 2025新高考志愿填報規(guī)則
- 記錄我的一天(教案)-2024-2025學(xué)年一年級上冊數(shù)學(xué)北師大版
- 部編 2024版歷史七年級上冊期末復(fù)習(xí)(全冊)教案
- 工程管理畢業(yè)論文范文(三篇)
- 新能源發(fā)電技術(shù) 電子課件 2.5 可控核聚變及其未來利用方式
- 五年級上冊英語單詞表外研
- 科室護(hù)理品牌
- Module 9 Unit2教學(xué)設(shè)計2024-2025學(xué)年外研版英語九年級上冊
評論
0/150
提交評論