2022-2023學年上海市虹口區(qū)中考數(shù)學專項突破仿真模擬卷(3月4月)含解析_第1頁
2022-2023學年上海市虹口區(qū)中考數(shù)學專項突破仿真模擬卷(3月4月)含解析_第2頁
2022-2023學年上海市虹口區(qū)中考數(shù)學專項突破仿真模擬卷(3月4月)含解析_第3頁
2022-2023學年上海市虹口區(qū)中考數(shù)學專項突破仿真模擬卷(3月4月)含解析_第4頁
2022-2023學年上海市虹口區(qū)中考數(shù)學專項突破仿真模擬卷(3月4月)含解析_第5頁
已閱讀5頁,還剩46頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

第頁碼51頁/總NUMPAGES總頁數(shù)51頁2022-2023學年上海市虹口區(qū)中考數(shù)學專項突破仿真模擬卷(3月)一、選一選(本大題共12小題,每小題3分,共36分)1.一元二次方程x2+3x=0的根為()A.﹣3 B.3 C.0,3 D.0,﹣32.在下列的銀行行徽中,是對稱圖形的是()A.B.C.D.3.三名同學同生日,她們做了一個游戲:買來3張相同的賀卡,各自在其中一張內(nèi)寫上祝福的話,然后放在一起,每人隨機拿一張,則她們拿到的賀卡是自己所寫的概率是()A. B. C. D.4.若兩個相似三角形的相似比為1:2,則它們面積的比為()A.2:1 B.1: C.1:4 D.1:55.二次函數(shù)y=3(x﹣2)2+5的圖象的頂點坐標是()A(2,5) B.(2,﹣5) C.(﹣2,5) D.(﹣2,﹣5)6.我們知道,上的五角星是旋轉(zhuǎn)對稱圖形,它旋轉(zhuǎn)與自身重合時,至少需要旋轉(zhuǎn)()A.36° B.60° C.45° D.72°7.如圖,A、B、C是⊙O上的三點,∠BAC=30°,則∠BOC的大小是()A.30° B.60° C.90° D.45°8.設(shè)x1、x2是一元二次方程2x2﹣4x﹣1=0的兩實數(shù)根,則x12+x22的值是()A.2 B.4 C.5 D.69.如圖,⊙O的直徑BC=12cm,AC是⊙O的切線,切點為C,AC=BC,AB與⊙O交于點D,則的長是()A.πcm B.3πcm C.4πcm D.5πcm10.如圖,矩形ABCD的長和寬分別為2cm和1cm,以D為圓心,AD為半徑作弧AE,再以AB的中點F為圓心,F(xiàn)B長為半徑作弧BE,則陰影部分的面積是()A.1cm2 B.2cm2 C.3cm2 D.4cm211.已知直角三角形的兩條直角邊分別為12cm和16cm,則這個直角三角形內(nèi)切圓的半徑是(

)A2cm B.3cm C.4cm D.5cm12.若函數(shù)y=ax+b的圖象一、二、四象限,則函數(shù)y=ax2+bx的圖象只可能是()A. B. C. D.二、填空題(每小題3分,共12分)13.⊙O的半徑為4cm,則⊙O的內(nèi)接正三角形的周長是_____cm.14.如圖是一個可以轉(zhuǎn)動的正六邊形轉(zhuǎn)盤,其中三個正三角形涂有陰影.轉(zhuǎn)動指針,指針落在有陰影的區(qū)域內(nèi)的概率為_____.15.關(guān)于x的一元二次方程有兩個沒有相等的實數(shù)根,則k的取值范圍是________.16.如圖是拋物線的一部分,其對稱軸為直線,若其與x軸一交點為,則由圖象可知,沒有等式的解集是______.三、解答題(每小題6分,共18分)17.解方程:x(x﹣1)=4x+6.18.若關(guān)于x的一元二次方程x2-3x+a-2=0有實數(shù)根.(1)求a的取值范圍;(2)當a為符合條件的整數(shù),求此時方程的解.19.如圖,AE為△ABC外接圓⊙O的直徑,AD為△ABC的高.求證:(1)∠BAD=∠EAC;(2)AB?AC=AD?AE四、解答題(每小題7分,共14分)20.某地2015年為做好“精準扶貧”工作,投入資金2000萬元用于異地安置,并投入資金逐年增加,2017年投入資金2880萬元,求2015年到2017年該地投入異地安置資金的年平均增長率.21.如圖,在平面直角坐標系中,△ABC的位置如圖所示(每個小方格都是邊長為1個單位長度的正方形).(1)將△ABC繞著點A順時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到△AB1C1,并直接寫出點B1、C1的坐標.(2)求線段AB所掃過的圖形的面積.五、解答題(每小題8分,共16分)22.二次函數(shù)y=ax2+bx+c的圖象過點(1,0)(0,3),對稱軸x=﹣1.(1)求函數(shù)解析式;(2)若圖象與x軸交于A、B(A在B左)與y軸交于C,頂點D,求四邊形ABCD的面積.23.為了解中考體育科目訓練情況,某地從九年級學生中隨機抽取了部分學生進行了考前體育科目測試,把測試結(jié)果分為四個等級:A級:;B級:良好;C級:及格;D級:沒有及格,并將測試結(jié)果繪成了如下兩幅沒有完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖中的信息解答下列問題:(1)請將兩幅沒有完整的統(tǒng)計圖補充完整;(2)如果該地參加中考的學生將有4500名,根據(jù)測試情況請你估計沒有及格的人數(shù)有多少?(3)從被抽測學生中任選一名學生,則這名學生成績是D級的概率是多少?六、解答題(每小題12分,共24分)24.如圖,AB為⊙O的直徑,點C在⊙O上,點D為的中點,過點D作EF∥BC,EF交AB的延長線于點E,交AC的延長線于點F.(1)求證:EF為⊙O的切線;(2)若OG⊥AD,BG平分∠ABC,試判斷:①△BDG的形狀;②線段AD與BD的數(shù)量關(guān)系,并說明理由.25.如圖,直線y=﹣x+1與x軸交于點A,與y軸交于點B,拋物線y=﹣x2+bx+cA、B兩點.(1)求拋物線的解析式;(2)點P是象限拋物線上的一點,連接PA、PB、PO,若△POA的面積是△POB面積的倍.①求點P的坐標;②點Q為拋物線對稱軸上一點,請直接寫出QP+QA最小值;(3)點M為直線AB上的動點,點N為拋物線上的動點,當以點O、B、M、N為頂點的四邊形是平行四邊形時,請直接寫出點M的坐標.2022-2023學年上海市虹口區(qū)中考數(shù)學專項突破仿真模擬卷(3月)一、選一選(本大題共12小題,每小題3分,共36分)1.一元二次方程x2+3x=0的根為()A.﹣3 B.3 C.0,3 D.0,﹣3【正確答案】D【詳解】【分析】根據(jù)一元二次方程的特點,利用因式分解法進行求解即可得.【詳解】x2+3x=0,x(x+3)=0,x=0,x+3=0,x1=0,x2=﹣3,故選D.本題考查了因式分解法解一元二次方程,能利用因式分解法進行求解的一元二次方程左側(cè)能進行因式分解,右側(cè)為0,熟練掌握是解題的關(guān)鍵.2.在下列的銀行行徽中,是對稱圖形的是()A. B. C. D.【正確答案】C【詳解】【分析】根據(jù)對稱圖形的定義進行判斷即可得.【詳解】A、沒有是對稱圖形,故本選項沒有符合題意;B、沒有是對稱圖形,故本選項沒有符合題意;C、是對稱圖形,故本選項符合題意;D、沒有是對稱圖形,故本選項沒有符合題意,故選C.本題考查了對稱圖形,熟知對稱圖形是指一個圖形繞著一個點旋轉(zhuǎn)180度后能與自身重合圖形是解題的關(guān)鍵.3.三名同學同生日,她們做了一個游戲:買來3張相同的賀卡,各自在其中一張內(nèi)寫上祝福的話,然后放在一起,每人隨機拿一張,則她們拿到的賀卡是自己所寫的概率是()A. B. C. D.【正確答案】A【詳解】【分析】個同學的賀卡為A,第二個同學的賀卡為B,第三個同學的賀卡為C,用列舉法可以得到三個人抽賀卡的情況有6種,抽到自己的情況有1種,用1除以6即可得出概率的值.【詳解】個同學的賀卡為A,第二個同學的賀卡為B,第三個同學的賀卡為C,共有(A,B,C)、(A,C,B)、(B,A,C)、(B,C,A)、(C,A,B)、(C,B,A),6種情況,她們拿到的賀卡都是自己的有:(A,B,C)共1種,故她們拿到的賀卡都是自己所寫的概率=,故選A.本題考查的是用列表法或樹狀圖法或列舉法求概率.列表法可以沒有重復沒有遺漏的列出所有可能的結(jié)果,適合于兩步完成的;樹狀圖法適合兩步或兩步以上完成的;解題時要注意是放回實驗還是沒有放回實驗;列舉法要注意做到?jīng)]有重沒有漏.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.4.若兩個相似三角形的相似比為1:2,則它們面積的比為()A.2:1 B.1: C.1:4 D.1:5【正確答案】C【詳解】【分析】根據(jù)相似三角形的面積比等于相似比進行求解即可得.【詳解】∵兩個相似三角形的相似比為1:2,∴它們面積的比等于()2==1:4,故選C.本題考查了相似三角形的性質(zhì),熟記相似三角形的面積比等于相似比的平方是解本題的關(guān)鍵.5.二次函數(shù)y=3(x﹣2)2+5的圖象的頂點坐標是()A.(2,5) B.(2,﹣5) C.(﹣2,5) D.(﹣2,﹣5)【正確答案】A【分析】根據(jù)二次函數(shù)頂點式寫出頂點坐標即可.【詳解】解:∵二次函數(shù)為y=a(x﹣h)2+k的頂點坐標是(h,k),∴二次函數(shù)y=3(x﹣2)2+5的圖象的頂點坐標是(2,5),故選:A.本題考查了二次函數(shù)的性質(zhì),熟練掌握利用頂點式寫出頂點坐標的方法是解題的關(guān)鍵6.我們知道,上的五角星是旋轉(zhuǎn)對稱圖形,它旋轉(zhuǎn)與自身重合時,至少需要旋轉(zhuǎn)()A.36° B.60° C.45° D.72°【正確答案】D【詳解】【分析】該圖形被平分成五部分,因而每部分被分成的圓心角是72°,因而旋轉(zhuǎn)72度的整數(shù)倍,就可以與自身重合.【詳解】根據(jù)旋轉(zhuǎn)對稱圖形的概念可知:該圖形被平分成五部分,旋轉(zhuǎn)72度的整數(shù)倍,就可以與自身重合,因而上的每一個正五角星繞著它的至少旋轉(zhuǎn)72度能與自身重合,故選D.本題考查了旋轉(zhuǎn)對稱圖形的性質(zhì),正確識圖、理解求解方法是關(guān)鍵.7.如圖,A、B、C是⊙O上的三點,∠BAC=30°,則∠BOC的大小是()A.30° B.60° C.90° D.45°【正確答案】B【詳解】【分析】欲求∠BOC,又已知一圓周角∠BAC,可利用圓周角與圓心角的關(guān)系求解.【詳解】∵∠BAC=30°,∴∠BOC=2∠BAC=60°(同弧所對的圓周角是圓心角的一半),故選B.本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.8.設(shè)x1、x2是一元二次方程2x2﹣4x﹣1=0的兩實數(shù)根,則x12+x22的值是()A.2 B.4 C.5 D.6【正確答案】C【詳解】【分析】根據(jù)根與系數(shù)的關(guān)系得出x1+x2=2,x1?x2=-,把2化成(x1+x2)2-2x1x2代入進行求出即可.【詳解】∵x1、x2是一元二次方程2x2﹣4x﹣1=0的兩實數(shù)根,∴x1+x2=2,x1x2=﹣,∴x12+x22=(x1+x2)2﹣2x1x2=22﹣2×(﹣)=5,故選C.本題考查了根與系數(shù)的關(guān)系的應用,關(guān)鍵是把所求的代數(shù)式化成含有x1+x2和x1?x2的形式.9.如圖,⊙O的直徑BC=12cm,AC是⊙O的切線,切點為C,AC=BC,AB與⊙O交于點D,則的長是()A.πcm B.3πcm C.4πcm D.5πcm【正確答案】B【詳解】【分析】連接OD,利用圓周角定理先求得∠COD的度數(shù),然后再利用弧長公式進行求解即可得.【詳解】連接OD,∵AC是切線,∴BC⊥AC,∴∠ACB=90°,∵AC=BC,∴∠A=∠B=45°,∴∠COD=2∠B=90°,∴的長==3π(cm),故選B.本題考查了圓周角定理以及弧長公式,求出所對的圓心角的度數(shù)是解題的關(guān)鍵.10.如圖,矩形ABCD的長和寬分別為2cm和1cm,以D為圓心,AD為半徑作弧AE,再以AB的中點F為圓心,F(xiàn)B長為半徑作弧BE,則陰影部分的面積是()A.1cm2 B.2cm2 C.3cm2 D.4cm2【正確答案】A【詳解】【分析】根據(jù)題意可知扇形DAE的面積與扇形FBE在面積相等,從而可得陰影部分的面積等于矩形面積的一半,據(jù)此即可求.【詳解】∵AD=1,AB=2,AB的中點是F,∴AF=BF=AB=1=AD,∴扇形DAE的面積=扇形FBE的面積,∴陰影部分的面積=1×1=1(cm2),故選A.本題考查了矩形的性質(zhì)、扇形面積的計算、拼圖,得出陰影部分的面積等于矩形面積的一半是解題的關(guān)鍵.11.已知直角三角形的兩條直角邊分別為12cm和16cm,則這個直角三角形內(nèi)切圓的半徑是(

)A.2cm B.3cm C.4cm D.5cm【正確答案】C【詳解】【分析】根據(jù)勾股定理先求出斜邊的長,再根據(jù)直角三角形內(nèi)切圓半徑公式(直角邊a、b,斜邊c,內(nèi)切圓半徑r,則r=)進行求解即可得.【詳解】∵直角三角形的兩直角邊分別為12,16,∴直角三角形的斜邊是20,∴內(nèi)切圓半徑為:(12+16﹣20)÷2=4,故選C.本題考查了直角三角形內(nèi)切圓半徑,需識記的知識點是:直角三角形內(nèi)切圓的半徑等于兩條直角邊的和與斜邊差的一半.12.若函數(shù)y=ax+b的圖象一、二、四象限,則函數(shù)y=ax2+bx的圖象只可能是()A. B. C. D.【正確答案】D【分析】根據(jù)函數(shù)y=ax+b的圖象位置確定a、b的符號,根據(jù)a、b的符號確定二次函數(shù)y=ax2+bx圖象的位置即可得.【詳解】解:∵函數(shù)y=ax+b的圖象一、二、四象限,∴a<0,b>0,∴二次函數(shù)y=ax2+bx的圖象開口向下,對稱軸x=->0,在y軸右邊,∴函數(shù)y=ax2+bx的圖象只可能是D,故選D.本題考查了函數(shù)、二次函數(shù)解析式的系數(shù)與圖象位置的關(guān)系.圖象的所有性質(zhì)都與解析式的系數(shù)有著密切關(guān)系.二、填空題(每小題3分,共12分)13.⊙O的半徑為4cm,則⊙O的內(nèi)接正三角形的周長是_____cm.【正確答案】12【詳解】【分析】如圖,根據(jù)題意畫出符合題意的圖形,在Rt△BOD中利用三角函數(shù)求出BD的值,從而求出邊長BC的值,再根據(jù)三角形的周長公式即可求得.【詳解】如圖所示:∵半徑為4的圓的內(nèi)接正三角形,∴Rt△BOD中,OB=4cm,∠OBD=30°,∴BD=cos30°×OB=×4=2,∵BD=CD,∴BC=2BD=4cm,即它的內(nèi)接正三角形的邊長為4cm,∴⊙O的內(nèi)接正三角形的周長是4×3=12cm,故答案為12.本題考查了圓與正三角形間的關(guān)系,根據(jù)題意正確畫出圖形是解題的關(guān)鍵.14.如圖是一個可以轉(zhuǎn)動的正六邊形轉(zhuǎn)盤,其中三個正三角形涂有陰影.轉(zhuǎn)動指針,指針落在有陰影的區(qū)域內(nèi)的概率為_____.【正確答案】【分析】根據(jù)題意可知指針指向有6種可能,其中落在陰影部分的有3種可能,根據(jù)概率公式進行計算即可.【詳解】解:∵正六邊形被分成相等的6部分,陰影部分占3部分,∴指針落在有陰影的區(qū)域內(nèi)的概率為:,故答案為.本題考查了簡單的概率計算,熟記概率的計算公式是關(guān)鍵.15.關(guān)于x的一元二次方程有兩個沒有相等的實數(shù)根,則k的取值范圍是________.【正確答案】且.【分析】根據(jù)根的判別式及一元二次方程的定義解題即可.【詳解】∵關(guān)于x的一元二次方程有兩個沒有相等的實數(shù)根,,解得.又∵該方程為一元二次方程,,且.故且.本題主要考查根的判別式及一元二次方程的定義,屬于基礎(chǔ)題,掌握根的判別式及一元二次方程的定義是解題的關(guān)鍵.16.如圖是拋物線的一部分,其對稱軸為直線,若其與x軸一交點為,則由圖象可知,沒有等式的解集是______.【正確答案】或【分析】由拋物線與x軸的一個交點(3,0)和對稱軸x=1可以確定另一交點坐標為(-1,0),又>0時,圖象在x軸上方,由此可以求出x的取值范圍.【詳解】解:∵拋物線與x軸的一個交點(3,0)而對稱軸x=1∴拋物線與x軸另一交點(﹣1,0)當>0時,圖象在x軸上方此時x<﹣1或x>3故答案為x<﹣1或x>3.本題考查的是二次函數(shù)與沒有等式的關(guān)系,解答此題的關(guān)鍵是求出圖象與x軸的交點,然后由圖象找出當y>0時,自變量x的范圍,本題鍛煉了學生數(shù)形的思想方法.三、解答題(每小題6分,共18分)17.解方程:x(x﹣1)=4x+6.【正確答案】x=6或x=﹣1【詳解】【分析】整理為一元二次方程的一般式后利用因式分解法進行求解即可得.【詳解】x2﹣x=4x+6,x2﹣5x﹣6=0,(x﹣6)(x+1)=0,x=6或x=﹣1.本題考查了解一元二次方程,熟練掌握解一元二次方程的方法是解題的關(guān)鍵.18.若關(guān)于x的一元二次方程x2-3x+a-2=0有實數(shù)根.(1)求a的取值范圍;(2)當a為符合條件的整數(shù),求此時方程的解.【正確答案】(1)a≤;(2)x=1或x=2.【分析】(1)根據(jù)韋達定理列出關(guān)于a的沒有等式,解沒有等式即可得到a的取值范圍;

(2)由(1)求出a的值,代入原方程即可得到一個新的方程,解新方程可以得到解.【詳解】(1)∵關(guān)于x的一元二次方程x2﹣3x+a﹣2=0有實數(shù)根,∴△≥0,即(﹣3)2﹣4(a﹣2)≥0,解得a≤;(2)由(1)可知a≤,∴a的整數(shù)值為4,此時方程為x2﹣3x+2=0,解得x=1或x=2.本題考查一元二次方程的應用,熟練掌握根的判別式應用及一元二次方程的求解是解題關(guān)鍵.19.如圖,AE為△ABC外接圓⊙O的直徑,AD為△ABC的高.求證:(1)∠BAD=∠EAC;(2)AB?AC=AD?AE【正確答案】(1)證明見解析;(2)證明見解析【詳解】【分析】(1)連結(jié)CE,由AE為直徑可以得到∠ACE=90°,則在△ABD與△AEC中,又有同弧所對的圓周角∠B與∠E相等,可以證明結(jié)論;(2)證明△ABD與△AEC相似,根據(jù)相似三角形的對應邊成比例可得,從而即可得AB?AC=AD?AE.【詳解】(1)如圖,連接CE,∵AD是△ABC的高,∴∠ADB=90°,∴∠BAD+∠B=90°,∵AE是⊙O的直徑,∴∠ACE=90°,∴∠EAC+∠E=90°,又∵∠B=∠E,∴∠BAD=∠EAC;(2)在△ABD與△AEC中,,∴△ABD∽△AEC,∴,∴AB?AC=AD?AE.本題考查了圓周角定理、相似三角形的判定與性質(zhì)等,準確添加輔助線是解題的關(guān)鍵.四、解答題(每小題7分,共14分)20.某地2015年為做好“精準扶貧”工作,投入資金2000萬元用于異地安置,并投入資金逐年增加,2017年投入資金2880萬元,求2015年到2017年該地投入異地安置資金的年平均增長率.【正確答案】20%【詳解】【分析】設(shè)年平均增長率x,根據(jù):2015年投入資金給×(1+增長率)2=2017年投入資金,列出方程求解可得.【詳解】設(shè)2015年到2017年該地投入異地安置資金的年平均增長率為x,根據(jù)題意得:2000(1+x)2=2880,解得:x1=0.2=20%,x2=﹣2.2(沒有合題意,舍去),答:2015年到2017年該地投入異地安置資金的年平均增長率為20%.本題主要考查一元二次方程的應用,由題意準確抓住相等關(guān)系并據(jù)此列出方程是解題的關(guān)鍵.21.如圖,在平面直角坐標系中,△ABC的位置如圖所示(每個小方格都是邊長為1個單位長度的正方形).(1)將△ABC繞著點A順時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的△AB1C1,并直接寫出點B1、C1的坐標.(2)求線段AB所掃過的圖形的面積.【正確答案】(1)畫圖見解析,B1(4,﹣2)、C1(1,﹣3);(2)π【分析】(1)利用網(wǎng)格特點和旋轉(zhuǎn)的性質(zhì)畫出點B、C的對應點B1、C1,從而得到△AB1C1,再寫出點B1、C1的坐標即可;(2)先求出AB的長,然后再利用扇形的面積公式進行計算即可得.【詳解】(1)如圖所示,△AB1C1即為所求;由圖可知點B1的坐標為(4,﹣2)、C1的坐標為(1,﹣3);(2)∵AB==3,且∠BAB1=90°,∴線段AB所掃過的圖形的面積為=π.本題考查了作圖——旋轉(zhuǎn)變換,扇形面積,作圖的關(guān)鍵是找到各關(guān)鍵點旋轉(zhuǎn)后的對應點,求扇形面積關(guān)鍵是熟記扇形面積公式.五、解答題(每小題8分,共16分)22.二次函數(shù)y=ax2+bx+c的圖象過點(1,0)(0,3),對稱軸x=﹣1.(1)求函數(shù)解析式;(2)若圖象與x軸交于A、B(A在B左)與y軸交于C,頂點D,求四邊形ABCD的面積.【正確答案】(1)y=﹣x2﹣2x+3;(2)9【詳解】試題分析:根據(jù)對稱軸求出與x軸的另一個交點,然后將函數(shù)設(shè)成交點式,將(0,3)代入解析式求出答案;根據(jù)題意分別求出點C和點D的坐標,從而求出四邊形的面積.試題解析:(1)∵對稱軸是x=-1,所以與x軸的另一個交點為(-3,0)所以設(shè)函數(shù)的解析式為y=a(x-1)(x+3),把(0,3)代入得a=-1所以函數(shù)的解析式為y=-(x-1)(x+3)或y=?x2-2x+3(2)根據(jù)題意得:C(0,3)D(-1,4)∴S=9考點:待定系數(shù)法求函數(shù)解析式23.為了解中考體育科目訓練情況,某地從九年級學生中隨機抽取了部分學生進行了考前體育科目測試,把測試結(jié)果分為四個等級:A級:;B級:良好;C級:及格;D級:沒有及格,并將測試結(jié)果繪成了如下兩幅沒有完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖中的信息解答下列問題:(1)請將兩幅沒有完整的統(tǒng)計圖補充完整;(2)如果該地參加中考的學生將有4500名,根據(jù)測試情況請你估計沒有及格的人數(shù)有多少?(3)從被抽測的學生中任選一名學生,則這名學生成績是D級的概率是多少?【正確答案】(1)補圖見解析;(2)900;(3)【分析】試題分析:(1)用B級的人數(shù)除以B級人數(shù)所占的百分比即可得這次抽查的總?cè)藬?shù),用總?cè)藬?shù)乘以C級人數(shù)所占的百分比即可得C級的人數(shù),再用總?cè)藬?shù)減去A、B、C級的人數(shù)即可求得D級的人數(shù),分別用A級、D級的人數(shù)除以總?cè)藬?shù)即可得A級、D級的人數(shù)所占的百分比,把求得的數(shù)據(jù)在統(tǒng)計圖上標出即可;(2)用總?cè)藬?shù)4500乘以沒有及格人數(shù)所占的百分比即可得答案;(3)從被抽測的學生中任選一名學生由40種結(jié)果,再求出這名學生成績是D級的結(jié)果,即可求出這名學生成績是D級的概率.試題解析:解:(1)抽樣測試的學生人數(shù)為40,扇形統(tǒng)計圖中補充:A級15%,D級20%;條形統(tǒng)計圖補充正確(下圖);(2)450020%=900(人(3)學生成績是D級的概率是.考點:條形統(tǒng)計圖;扇形統(tǒng)計圖;用樣本估計總體;概率公式.【詳解】六、解答題(每小題12分,共24分)24.如圖,AB為⊙O的直徑,點C在⊙O上,點D為的中點,過點D作EF∥BC,EF交AB的延長線于點E,交AC的延長線于點F.(1)求證:EF為⊙O的切線;(2)若OG⊥AD,BG平分∠ABC,試判斷:①△BDG的形狀;②線段AD與BD的數(shù)量關(guān)系,并說明理由.【正確答案】(1)證明見解析;(2)①等腰直角三角形,②AD=2BD.【詳解】【分析】(1)連接OD,證明OD⊥EF,再根據(jù)OD是半徑即可得證;(2)①△BDG是等腰直角三角形,理由:由已知可得到∠ACB=∠ADB=90°,通過推導可以得到∠GAB+∠GBA=45°,從而可得∠BGD=45°,即可證得△BDG是等腰直角三角形;②結(jié)論:AD=2BD,理由:由OG⊥AD,可得AG=GD,由①可知DG=DB,從而得到AD=2BD.【詳解】(1)連接OD.∵,∴OD⊥BC,∵BC∥EF,∴EF⊥OD,∴EF是⊙O的切線.(2)①△BDG是等腰直角三角形;理由:∵AB是直徑,∴∠ACB=∠ADB=90°,∴∠CAB+∠ABC=90°,∵,∴GA平分∠BAC,又∵GB平分∠ABC,∴∠GAB+∠GBA=45°,∴∠BGD=45°,∴△BDG是等腰直角三角形,②結(jié)論:AD=2BD.理由:∵OG⊥AD,∴AG=GD,∵△BDG是等腰直角三角形,∴DG=DB,∴AD=2BD.本題主要考查了垂徑定理、圓周角定理、切線的判定、等腰直角三角形的判定與性質(zhì)等,綜合性質(zhì)較強,準確添加輔助線,靈活運用相關(guān)知識是解題的關(guān)鍵.25.如圖,直線y=﹣x+1與x軸交于點A,與y軸交于點B,拋物線y=﹣x2+bx+cA、B兩點.(1)求拋物線的解析式;(2)點P是象限拋物線上的一點,連接PA、PB、PO,若△POA的面積是△POB面積的倍.①求點P的坐標;②點Q為拋物線對稱軸上一點,請直接寫出QP+QA的最小值;(3)點M為直線AB上的動點,點N為拋物線上的動點,當以點O、B、M、N為頂點的四邊形是平行四邊形時,請直接寫出點M的坐標.【正確答案】(1)y=﹣x2+x+1;(2)①P(,1);②;(3)(1+,(1﹣))或(1﹣,﹣(1+))或(1,)或(﹣(1+),(3+))或(﹣(1﹣),(3﹣))【詳解】試題分析:(1)先確定出點A,B坐標,再用待定系數(shù)法求出拋物線解析式;(2)設(shè)出點P的坐標,①用△POA的面積是△POB面積的倍,建立方程求解即可;②利用對稱性找到最小線段,用兩點間距離公式求解即可;(3)分OB為邊和為對角線兩種情況進行求解,①當OB為平行四邊形的邊時,用MN∥OB,表示和用MN=OB,建立方程求解;②當OB為對角線時,OB與MN互相平分,交點為H,設(shè)出M,N坐標用OH=BH,MH=NH,建立方程組求解即可.試題解析:(1)∵直線y=﹣x+1與x軸交于點A,與y軸交于點B,∴A(2,0),B(0,1),∵拋物線y=﹣x2+bx+cA、B兩點,∴,∴∴拋物線解析式為y=﹣x2+x+1,(2)①由(1)知,A(2,0),B(0,1),∴OA=2,OB=1,由(1)知,拋物線解析式為y=﹣x2+x+1,∵點P是象限拋物線上的一點,∴設(shè)P(a,﹣a2+a+1),((a>0,﹣a2+a+1>0),∴S△POA=OA×Py=×2×(﹣a2+a+1)=﹣a2+a+1S△POB=OB×Px=×1×a=a∵△POA的面積是△POB面積的倍.∴﹣a2+a+1=×a,∴a=或a=﹣(舍)∴P(,1);②如圖1,由(1)知,拋物線解析式為y=﹣x2+x+1,∴拋物線的對稱軸為x=,拋物線與x軸的另一交點為C(﹣,0),∵點A與點C關(guān)于對稱軸對稱,∴QP+QA的最小值就是PC=;(3)①當OB為平行四邊形的邊時,MN=OB=1,MN∥OB,∵點N在直線AB上,∴設(shè)M(m,﹣m+1),∴N(m,﹣m2+m+1),∴MN=|﹣m2+m+1﹣(﹣m+1)|=|m2﹣2m|=1,Ⅰ、m2﹣2m=1,解得,m=1±,∴M(1+,(1﹣))或M(1﹣,(1+))Ⅱ、m2﹣2m=﹣1,解得,m=1,∴M(1,);②當OB為對角線時,OB與MN互相平分,交點為H,∴OH=BH,MH=NH,∵B(0,1),O(0,0),∴H(0,),設(shè)M(n,﹣n+1),N(d,﹣d2+d+1)∴,∴或,∴M(﹣(1+),(3+))或M(﹣(1﹣),(3﹣));即:滿足條件的點M的坐標(1+,(1﹣))或(1﹣,﹣(1+))或(1,)或M(﹣(1+),(3+))或M(﹣(1﹣),(3﹣));考點:二次函數(shù)綜合題.2022-2023學年上海市虹口區(qū)中考數(shù)學專項突破仿真模擬卷(4月)一、選一選:(本大題共有8個小題,每小題3分,共24分)1.的相反數(shù)是()A. B.2 C. D.2.下列計算正確的一個是()A.a5+a5=2a10 B.a3·a5=a15 C.(a2b)3=a2b3 D.=3.某幾何體的三視圖如左圖所示,則此幾何體是()A.正三棱柱 B.圓柱 C.長方 D.圓錐4.在中,,,,則的值為()A. B. C. D.5.二次函數(shù)y=x2﹣x﹣2的圖象如圖所示,則函數(shù)值y<0時x的取值范圍是()Ax<﹣1 B.x>2 C.﹣1<x<2 D.x<﹣1或x>26.截至2014度,我國人口已超過13億人.數(shù)據(jù)“13億”用科學記數(shù)可表示為()A.1.3×108 B.13×108 C.13×109 D.1.3×1097.如圖,直線AB與半徑為2的⊙O相切于點C,D是⊙O上一點,且∠EDC=30°,弦EF∥AB,則EF的長度為()A.2 B.2 C. D.28.如圖,四邊形ABCD為矩形紙片.把紙片ABCD折疊,使點B恰好落在CD邊的中點E處,折痕為AF,若CD=6,則AF的長是()A.7.5 B.8 C. D.二、填空題(本大題共8小題,每小題3分,共24分)9.一組數(shù)據(jù)2,4,x,2,3,4眾數(shù)是2,則x=__________.10.分解因式:______.11.已知關(guān)于x的一元二次方程的一個根是2,那么這個方程的另一個根是___________.12.若一個函數(shù)圖象點(2,),則這個函數(shù)的解析式為_______________(寫出一個即可).13.函數(shù)中自變量x的取值范圍是_____.14.用一張半徑為9cm、圓心角為120°的扇形紙片,做成一個圓錐形冰淇淋的側(cè)面(沒有計接縫),那么這個圓錐形冰淇淋的底面半徑是_________cm.15.如圖,小明用直尺和圓規(guī)作一個角等于已知角,則說明的依據(jù)是______.16.如圖,在反比例函數(shù)y=(x>0)的圖象上,有點P1,P2,P3,P4,它們的橫坐標依次為1,2,3,4.分別過這些點作x軸與y軸的垂線,圖中所構(gòu)成的陰影部分的面積從左到右依次為S1,S2,S3,則S1+S2+S3=___________.三、解答題(本大題共有11個小題,共102分,請在答題卡指定區(qū)域內(nèi)作答,解答時應寫出文字說明、證明過程或演算步驟)17.計算:.18.解方程:19.如圖,在△ABC中,D是BC邊上的一點,E是AD的中點,過A點作BC的平行線交CE的延長線于F,且AF=BD,連接BF.(1)求證:D是BC的中點(2)如果AB=AC,試判斷四邊形AFBD的形狀,并證明你的結(jié)論.20.灌云為了解今年九年級學生體育測試情況,隨機抽查了部分學生的體育測試成績?yōu)闃颖荆碅、B、C、D四個等級進行統(tǒng)計,并將統(tǒng)計結(jié)果繪制成如下的統(tǒng)計圖,請你圖中所給信息解答下列問題:(說明:A級:90分~100分;B級:75分~89分;C級:60分~74分;D級:60分以下)(1)請把條形統(tǒng)計圖補充完整;(2)樣本中D級的學生人數(shù)占全班學生人數(shù)的百分比是_____________;(3)扇形統(tǒng)計圖中A級所在扇形的圓心角度數(shù)是_____________;(4)若該縣九年級有8000名學生,請你用此樣本估計體育測試中A級和B級的學生人數(shù)之和.21.甲、乙兩超市(大型商場)同時開業(yè),為了吸引顧客,都舉行了有獎酬賓:凡購物滿100元,均可得到摸獎的機會.在一個紙盒里裝有2個紅求和2個白球,除顏色外其他都相同,摸獎者從中摸出兩個球,根據(jù)球的顏色決定送禮金券(在他們超市使用時,與人民幣等值)的多少(如下表)甲超市球兩紅一紅一白兩白禮金券5105乙超市球兩紅一紅一白兩白禮金券10510(1)用樹狀圖或列表法表示得到摸獎機會時中禮金券的所有情況;(2)如果只考慮中獎因素,你將會選擇去哪個超市購物?請說明理由.22.如圖,AB是⊙O的直徑,弦BC=9,∠BOC=50°,OE⊥AC,垂足為E.(1)求OE的長.(2)求劣弧AC的長(結(jié)果到0.1).23.美麗洪澤湖周邊景點密布.如圖A,B為湖濱的兩個景點,C為湖心一個景點.景點B在景點C的正東,從景點A看,景點B在北偏東75°方向,景點C在北偏東30°方向.一游客自景點駕船以每分鐘20米的速度行駛了10分鐘到達景點C,之后又以同樣的速度駛向景點B,該游客從景點C到景點B需用多長時間(到1分鐘)?24.在△ABC中,∠BAC=45°,若BD=2,CD=3,AD⊥BC于D,將△ABD沿AB所在的直線折疊,使點D落在點E處;將△ACD沿AC所在的直線折疊,使點D落在點F處,分別延長EB、FC使其交于點M.(1)判斷四邊形AEMF的形狀,并給予證明.(2)設(shè)AD=x,利用勾股定理,建立關(guān)于x的方程模型,求四邊形AEMF的面積.25.已知雙曲線與直線相交于A、B兩點.象限上的點M(m,n)(在A點左側(cè))是雙曲線上的動點.過點B作BD∥y軸交x軸于點D.過N(0,-n)作NC∥x軸交雙曲線于點E,交BD于點C.(1)若點D坐標是(-8,0),求A、B兩點坐標及k的值.(2)若B是CD的中點,四邊形OBCE的面積為4,求直線CM的解析式.(3)設(shè)直線AM、BM分別與y軸相交于P、Q兩點,且MA=pMP,MB=qMQ,求p-q的值.26.如圖,對稱軸為直線x=的拋物線點A(6,0)和B(0,4).(1)求拋物線解析式及頂點坐標;(2)設(shè)點E(x,y)是拋物線上一動點,且位于第四象限,四邊形OEAF是以O(shè)A為對角線的平行四邊形,求四邊形OEAF的面積S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;(3)①當四邊形OEAF的面積為24時,請判斷OEAF是否為菱形?②是否存在點E,使四邊形OEAF為正方形?若存在,求出點E的坐標;若沒有存在,請說明理由.2022-2023學年上海市虹口區(qū)中考數(shù)學專項突破仿真模擬卷(4月)一、選一選:(本大題共有8個小題,每小題3分,共24分)1.的相反數(shù)是()A. B.2 C. D.【正確答案】B【分析】根據(jù)相反數(shù)的定義可得結(jié)果.【詳解】因為-2+2=0,所以-2的相反數(shù)是2,故選:B.本題考查求相反數(shù),熟記相反數(shù)的概念是解題的關(guān)鍵.2.下列計算正確的一個是()A.a5+a5=2a10 B.a3·a5=a15 C.(a2b)3=a2b3 D.=【正確答案】D【詳解】分析:分別根據(jù)合并同類項法則,同底數(shù)冪的乘法:an?am=am+n;積的乘方運算法則(a?b)m=am?bm,和平方差公式,進行計算即可判斷正誤.詳解:A、根據(jù)同類項的概念和合并,可知a5+a5=2a5,因此A選項錯誤;

B、根據(jù)同底數(shù)冪相乘的法則,可得a3?a5=a8,故B選項錯誤;

C、根據(jù)積的乘方,可得(a2b)3=a6b3,故C選項沒有正確;

D、根據(jù)平方差公式,可得=,故D選項正確.故選D.點睛:此題主要考查學生冪的有關(guān)運算,區(qū)別冪的四則混合運算法則,簡單,重視基礎(chǔ).3.某幾何體的三視圖如左圖所示,則此幾何體是()A.正三棱柱 B.圓柱 C.長方 D.圓錐【正確答案】A【詳解】分析:根據(jù)幾何體的三視圖的特點,生活實際中的幾何體的特點判斷即可.詳解:根據(jù)主視圖和左視圖為矩形判斷出是柱體,根據(jù)俯視圖是三角形可判斷出這個幾何體應該是三棱柱.

故選A.點睛:本題比較容易,考查三視圖.講評時根據(jù)主視圖、俯視圖和左視圖,很容易得出這個幾何體是正三棱柱.4.在中,,,,則的值為()A. B. C. D.【正確答案】C【詳解】分析:在直角△ABC中,根據(jù)勾股定理就可以求出AC.再根據(jù)三角函數(shù)即可解決.詳解:由勾股定理知,AC==5,∴tanA==.故選C.點睛:此題主要考查直角三角形中正切問題及勾股定理運用,利用了勾股定理和銳角三角函數(shù)的定義是解題關(guān)鍵.5.二次函數(shù)y=x2﹣x﹣2的圖象如圖所示,則函數(shù)值y<0時x的取值范圍是()A.x<﹣1 B.x>2 C.﹣1<x<2 D.x<﹣1或x>2【正確答案】C【詳解】解:由x2﹣x﹣2=0可得:x1=﹣1,x2=2,觀察函數(shù)圖象可知,當﹣1<x<2時,函數(shù)值y<0.故選C.6.截至2014度,我國人口已超過13億人.數(shù)據(jù)“13億”用科學記數(shù)可表示為()A.1.3×108 B.13×108 C.13×109 D.1.3×109【正確答案】D【詳解】分析:由科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的值與小數(shù)點移動的位數(shù)相同.當原數(shù)值>1時,n是正數(shù);當原數(shù)的值<1時,n是負數(shù).詳解:13億=1300000000=1.3×109.點睛:此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.7.如圖,直線AB與半徑為2的⊙O相切于點C,D是⊙O上一點,且∠EDC=30°,弦EF∥AB,則EF的長度為()A.2 B.2 C. D.2【正確答案】B【詳解】本題考查的圓與直線的位置關(guān)系中的相切.連接OC,EC所以∠EOC=2∠D=60°,所以△ECO為等邊三角形.又因為弦EF∥AB所以O(shè)C垂直EF故∠OEF=30°所以EF=OE=2.8.如圖,四邊形ABCD為矩形紙片.把紙片ABCD折疊,使點B恰好落在CD邊的中點E處,折痕為AF,若CD=6,則AF的長是()A7.5 B.8 C. D.【正確答案】D【詳解】分析:先圖形折疊的性質(zhì)得到BF=EF,AE=AB,再由E是CD的中點可求出ED的長,再求出∠EAD的度數(shù),設(shè)FE=x,則AF=2x,在△ADE中利用勾股定理即可求解.詳解:由折疊的性質(zhì)得BF=EF,AE=AB,

因為CD=6,E為CD中點,故ED=3,

又因為AE=AB=CD=6,

所以∠EAD=30°,

則∠FAE=(90°-30°)=30°,

設(shè)FE=x,則AF=2x,

在△AEF中,根據(jù)勾股定理,(2x)2=62+x2,

x2=12,x1=2,x2=-2(舍去).

AF=2×2=4.故選D.點睛:變換是新課程所提倡的,本題主要考查在折疊這一過程中的一些量的沒有變性,同時考查了學生對矩形、直角三角形之間的邊角關(guān)系.本題也可用勾股定理來求解.解答此題要抓住折疊前后的圖形全等的性質(zhì)解答.二、填空題(本大題共8小題,每小題3分,共24分)9.一組數(shù)據(jù)2,4,x,2,3,4的眾數(shù)是2,則x=__________.【正確答案】2【詳解】解:因為眾數(shù)是2,所以2出現(xiàn)的次數(shù)應該至多,2應該有3個,即x=2.10.分解因式:______.【正確答案】##【分析】原式提取2,再利用平方差公式分解即可.【詳解】解:=2(m2-9)=2(m+3)(m-3).故2(m+3)(m-3).此題考查了提公因式法與公式法的綜合運用,熟練掌握因式分解的方法是解本題的關(guān)鍵.11.已知關(guān)于x的一元二次方程的一個根是2,那么這個方程的另一個根是___________.【正確答案】【詳解】分析:把2代入方程求得k的值,根據(jù)兩根之積求得另一個根.詳解:一元二次方程x2+kx+k-2=0的一個根是2,

將x=2代入方程x2+kx+k-2=0可得:k=-.

根據(jù)韋達定理,兩根之積是=-.可求出另一根是-.

故本題-.點睛:本題考查了一元二次方程ax2+bx+c=0的根與系數(shù)關(guān)系即韋達定理,兩根之和是-,兩根之積是.本題可以用定義求出k的值,然后選擇合適的方法求解,對定義理解沒有透的學生可能會用求根公式,將陷入繁瑣的計算之中.12.若一個函數(shù)的圖象點(2,),則這個函數(shù)的解析式為_______________(寫出一個即可).【正確答案】【詳解】分析:根據(jù)待定系數(shù)法,寫自己的喜好的,符合條件的:學過的正比例函數(shù)、函數(shù)、反比例函數(shù)及二次函數(shù)即可.詳解:如等.故答案為.點睛:此題考查學生對函數(shù)知識理解.學生可以根據(jù)自己的喜好從學過的正比例函數(shù)、函數(shù)、反比例函數(shù)及二次函數(shù)寫出一個函數(shù)即可.體現(xiàn)對學生的人文關(guān)懷.13.函數(shù)中自變量x的取值范圍是_____.【正確答案】.【分析】根據(jù)分式有意義的條件和二次根式有意義的條件,列沒有等式組求出函數(shù)自變量的取值范圍即可.【詳解】解:∵x-4≠0,x-4≥0解得x>4.故答案x>4.此題主要考查自變量的取值范圍,涉及二次根式與分式的自變量的取值情況,利用分式有意義的條件和二次根式有意義的條件解題是關(guān)鍵.14.用一張半徑為9cm、圓心角為120°的扇形紙片,做成一個圓錐形冰淇淋的側(cè)面(沒有計接縫),那么這個圓錐形冰淇淋的底面半徑是_________cm.【正確答案】3【詳解】解:半徑為9cm、圓心角為120°的扇形弧長是:設(shè)圓錐的底面半徑是r,則2πr=6π,解得:r=3cm.這個圓錐形冰淇淋的底面半徑是3cm.15.如圖,小明用直尺和圓規(guī)作一個角等于已知角,則說明的依據(jù)是______.【正確答案】SSS【分析】根據(jù)作一個角等于已知角的過程可判斷,即可得出結(jié)論.【詳解】作一個角等于已知角的過程中,,,,則,判定依據(jù)為,故有,故.本題考查作一個角等于已知角的過程理解及全等三角形的判定,理解作圖過程中的相等線段是解題關(guān)鍵.16.如圖,在反比例函數(shù)y=(x>0)的圖象上,有點P1,P2,P3,P4,它們的橫坐標依次為1,2,3,4.分別過這些點作x軸與y軸的垂線,圖中所構(gòu)成的陰影部分的面積從左到右依次為S1,S2,S3,則S1+S2+S3=___________.【正確答案】【詳解】解:由圖可知圖中所構(gòu)成的陰影部分的面積和正好是從點P1向x軸,y軸引垂線構(gòu)成的長方形面積減去最下方的長方形的面積.由題意可知點P1、P2、P3、P4坐標分別為:(1,2),(2,1),(3,),(4,),∴由反比例函數(shù)的幾何意義可知:S1+S2+S3=2-1×=1.5.故答案為:1.5.三、解答題(本大題共有11個小題,共102分,請在答題卡指定區(qū)域內(nèi)作答,解答時應寫出文字說明、證明過程或演算步驟)17.計算:.【正確答案】2【詳解】分析:根據(jù)負整指數(shù)冪的性質(zhì),角的三角函數(shù)值,值,零指數(shù)冪的性質(zhì),直接計算即可.詳解:.=2-+=2.點睛:此題主要考查簡單的實數(shù)計算,包含零指數(shù),負指數(shù),值及角的余弦值等,靈活運用是解題關(guān)鍵.18.解方程:【正確答案】【詳解】分析:根據(jù)分式方程的解法,先化為整式方程,解整式方程,然后檢驗即可求解.詳解:方程兩邊同時乘以,得整理,得解這個方程,得經(jīng)檢驗:是原方程的解點睛:考查學生解分式方程的一般步驟,同事考查了一元二次方程的解法,尤其考查了學生容易遺忘檢驗所解的整式方程的根是否是分式方程的增根.19.如圖,在△ABC中,D是BC邊上的一點,E是AD的中點,過A點作BC的平行線交CE的延長線于F,且AF=BD,連接BF.(1)求證:D是BC的中點(2)如果AB=AC,試判斷四邊形AFBD的形狀,并證明你的結(jié)論.【正確答案】(1)見解析;(2)見解析.【分析】(1)先由AF∥BC,利用平行線的性質(zhì)可證∠AFE=∠DCE,而E是AD中點,那么AE=DE,∠AEF=∠DEC,利用AAS可證△AEF≌△DEC,那么有AF=DC,又AF=BD,從而有BD=CD;(2)四邊形AFBD是矩形.由于AF平行等于BD,易得四邊形AFBD是平行四邊形,又AB=AC,BD=CD,利用等腰三角形三線合一定理,可知AD⊥BC,即∠ADB=90°,那么可證四邊形AFBD是矩形.【詳解】證明:(1)∵AF∥BC,∴∠AFE=∠DCE,∵E是AD的中點,∴AE=DE,∵∠AFE=∠DCE,∠AEF=∠DEC,AE=DE,∴△AEF≌△DEC(AAS),∴AF=DC,∵AF=BD,∴BD=CD,∴D是BC的中點;(2)四邊形AFBD是矩形.理由:∵AB=AC,D是BC的中點,∴AD⊥BC,∴∠ADB=90°,∵AF=BD,過A點作BC的平行線交CE的延長線于點F,即AF∥BC,∴四邊形AFBD是平行四邊形,又∵∠ADB=90°,∴四邊形AFBD是矩形.本題利用了平行線的性質(zhì)、全等三角形的判定和性質(zhì)、等量代換、平行四邊形的判定、等腰三角形三線合一定理、矩形的判定等知識.20.灌云為了解今年九年級學生體育測試情況,隨機抽查了部分學生的體育測試成績?yōu)闃颖?,按A、B、C、D四個等級進行統(tǒng)計,并將統(tǒng)計結(jié)果繪制成如下的統(tǒng)計圖,請你圖中所給信息解答下列問題:(說明:A級:90分~100分;B級:75分~89分;C級:60分~74分;D級:60分以下)(1)請把條形統(tǒng)計圖補充完整;(2)樣本中D級的學生人數(shù)占全班學生人數(shù)的百分比是_____________;(3)扇形統(tǒng)計圖中A級所在的扇形的圓心角度數(shù)是_____________;(4)若該縣九年級有8000名學生,請你用此樣本估計體育測試中A級和B級的學生人數(shù)之和.【正確答案】①.10%②.72°【詳解】先求出樣本中D等級的學生人數(shù)占全班學生人數(shù)的百分比是1-46%-24%-20%,進而得出D組人數(shù),A級所在的扇形的圓心角度數(shù)是:20%×360°=72°,根據(jù)A級和B級的學生人數(shù)所占比例求出該縣九年級有500名學生所占人數(shù)21.甲、乙兩超市(大型商場)同時開業(yè),為了吸引顧客,都舉行了有獎酬賓:凡購物滿100元,均可得到摸獎的機會.在一個紙盒里裝有2個紅求和2個白球,除顏色外其他都相同,摸獎者從中摸出兩個球,根據(jù)球的顏色決定送禮金券(在他們超市使用時,與人民幣等值)的多少(如下表)甲超市球兩紅一紅一白兩白禮金券5105乙超市球兩紅一紅一白兩白禮金券10510(1)用樹狀圖或列表法表示得到摸獎機會時中禮金券的所有情況;(2)如果只考慮中獎因素,你將會選擇去哪個超市購物?請說明理由.【正確答案】(1)答案見解析;(2)我選擇去甲超市購物,理由見解析.【詳解】(1)讓所求的情況數(shù)除以總情況數(shù)即為所求的概率;

(2)算出相應的平均,比較即可.解:(1)樹狀圖:(2)方法1:∵去甲超市購物摸獎獲10元禮金券的概率P(甲)==,去乙超市購物摸獎獲10元禮金券的概率P(乙)==,∴P(甲)>P(乙)∴我選擇去甲超市購物方法2:∵P(兩紅)=,P(兩白)=,P(一紅一白)=,∴在甲商場獲禮金券的平均是×5+×10+×5=,在乙商場獲禮金券的平均是×10+×5+×10=,∴>,∴我選擇去甲超市購物“點睛”樹狀圖法適合兩步或兩步以上完成的;解題時要注意此題是放回實驗還是沒有放回實驗.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.22.如圖,AB是⊙O的直徑,弦BC=9,∠BOC=50°,OE⊥AC,垂足為E.(1)求OE的長.(2)求劣弧AC的長(結(jié)果到0.1).【正確答案】(1)4.5(2)24.2【分析】(1)由垂徑定理知,由E是AC的中點,點O是AB的中點,則OB是△ABC的BC邊對的中位線,所以O(shè)E=BC÷2;(2)由圓周角定理得,∠A=∠BDC=25°,由等邊對等角得∠OCA=∠A,由三角形內(nèi)角和定理求得∠AOC的度數(shù),再利用弧長公式求得弧AC的長.【詳解】(1)∵OE⊥AC,OE為直徑的一部分∴AE=EC又∵AO=BO∴(2)∵∠COB=50°∴∠AOC=130°∵AO=CO,OE⊥AC∴∠AOE=∠AOC=65°∴∴AO=∴23.美麗的洪澤湖周邊景點密布.如圖A,B為湖濱的兩個景點,C為湖心一個景點.景點B在景點C的正東,從景點A看,景點B在北偏東75°方向,景點C在北偏東30°方向.一游客自景點駕船以每分鐘20米的速度行駛了10分鐘到達景點C,之后又以同樣的速度駛向景點B,該游客從景點C到景點B需用多長時間(到1分鐘)?【正確答案】該游客自景點駛向景點約需27分鐘.【詳解】分析:根據(jù)實際問題,構(gòu)造直角三角形,然偶根據(jù)解直角三角形知識,利用銳角三角函數(shù)即可.詳解:根據(jù)題意,得AC=20×10=200.過點A作AD垂直于直線BC,垂足為D.在Rt△ADC中,AD=AC×cos∠CAD=200×cos30°=100,DC=AC×sin∠CAD=200×sin30°=100.在Rt△ADB中,DB=AD×tan∠BAD=100×tan75°.所以CB=DB-DC=100×tan75°-100.所以=5tan75°-5≈27.即該游客自景點駛向景點約需27分鐘.點睛:此題考查方位角,三角函數(shù)的應用以及近似數(shù)的取值,構(gòu)造直角三角形解題是解題關(guān)鍵.24.在△ABC中,∠BAC=45°,若BD=2,CD=3,AD⊥BC于D,將△ABD沿AB所在的直線折疊,使點D落在點E處;將△ACD沿AC所在的直線折疊,使點D落在點F處,分別延長EB、FC使其交于點M.(1)判斷四邊形AEMF的形狀,并給予證明.(2)設(shè)AD=x,利用勾股定理,建立關(guān)于x的方程模型,求四邊形AEMF的面積.【正確答案】(1)四邊形AEMF是正方形;(2)36【詳解】分析:(1)根據(jù)折疊的性

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論