第二章晶體結構14版_第1頁
第二章晶體結構14版_第2頁
第二章晶體結構14版_第3頁
第二章晶體結構14版_第4頁
第二章晶體結構14版_第5頁
已閱讀5頁,還剩94頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

無機材料科學導論AnIntroductiontoScienceforInorganicMaterials(I)南京工業(yè)大學材料科學與工程學院郭露村推薦閱讀文獻

SuggestedReadingM.A.Omar,ElementarySolidStatePhysics,1sted.,Addison-WesleyPublishingCompany,1975C.Kittle,IntroductiontoSolidStatePhysics,4thed.JohnWiley&Sons,Inc.,NewYork,1971,(5thed.or6thed.evenbetter,ifavailable.)G.M.Barrow,PhysicChemistry,5thed.,McGraw-Hill,Inc.,1988L.H.VanVlack,ElementsofMaterialsScienceandEngineering,5thed.,Addison-WesleyPublishingCompany,1985(6thed.,1994)W.S.Kingery,IntroductiontoCeramics,2nded.,JohnWiley&Sons,Inc.,NewYork,1976.W.D.金格瑞等著[美].清華譯.《陶瓷導論》.

北京:建筑工業(yè)出版社,1982L.H.范.弗萊克著[美].夏宗寧等譯.《材料科學與工程基礎》

(第四版).機械工業(yè)出版社.1984馮端等主編,《材料科學導論》化學工業(yè)出版社.2002.5關振鐸等編.《無機材料物理性能》清華大學出版社,1992顧宜主編.《材料科學與工程基礎》

化學工業(yè)出版社.2002吳剛主編.《材料結構表征及應用》

化學工業(yè)出版社.2002李言榮,惲正中編.《材料物理學概論》清華大學出版社,2001張立德等著.《納米材料和納米結構》.

科學出版社,2001第二章:晶體結構ChapterIICrystalStructures2.1.基本概念Basicconcepts【晶體】crystal(結晶態(tài),crystallinestate)【多晶體】polycrystallinestate【無定形非晶體】amorphous

material【準晶體】quasicrystal【液晶】liquidcrystal【超晶格】superlattice【超材料】supermaterial2.1.1

凝聚態(tài)物質(zhì)的基本形態(tài)

PrincipalStatesofcondensedmatter

自然態(tài)非自然態(tài)【晶體】crystalAquartzcrystal

Ahalitecrystal

Anaquamarinecrystal單晶體外貌內(nèi)部原子排列完全周期性【多晶體】polycrystalline

陶瓷ceramics陶瓷顯微結玻璃陶瓷Li2O-Al2O3-SiO2

偏光顯微鏡ZrO2-Y2O3

陶瓷,TEM(Bright-field)96%Al2O3陶瓷Reflectedlightmicroscopy

冶煉碳化硅【無定形非晶體】amorphous

material

玻璃體、高分子、非晶態(tài)金屬Structureofglass:shortrangecrystallineSiO2玻璃(浮法玻璃)Transmittedpolarisedlightmicroscopy玻璃:玻璃體高分子非晶態(tài)金屬非晶態(tài)物質(zhì)結構SEMofsinglegrainsofquasicrystals:(a)anAluminum-Copper-Ironalloywhichcrystallizesintheshapeofadodecahedron.【準晶體】quasicrystal特點:具有長程取向序,而無平移對稱

(無排列周期性)【液晶】liquidcrystalinasolidcrystalstateinaliquidstateinaliquidcrystalstateTemperatureT1T2液晶相溫區(qū)Withinlayers,themoleculescanslidearoundeachother!液晶顯微結構PhotoofthesmecticCphase

(usingpolarizingmicroscope)PhotoofthesmecticCphase

(usingpolarizingmicroscope)Cross-polarisedlightmicroscopy

SEM【晶格與格點】crystallatticeandlatticesites

從具體的晶體抽象出來的幾何立體格子稱晶格,簡稱格子,其中所有的原子位置(atomicsites)均被格點(latticesitesorlatticepoints)取代。2.1.2.晶體結構基本要素及構成

Basicelementsandbuildupofcystals【fcc面心立方&bcc體心立方結構】face-centeredcubic&body-centeredcubic)Interstitialsitesinfcc體心立方bcc面心立方fcc2typesofhole–TetrahedralorOctahedral(larger)六方緊密堆積

hcpstructure

【緊密堆積結構】

hcp

&fcc(face-centeredcubic,面心立方)

立方緊密堆積

fcc

structure

(hexagonally-closepacked)ABCABC..packingABABA..packingNote:Thebccisnotaclose-packedstructure!Close-packedstructures【基】又稱:基元

basis

晶體中最小的周期性重復的單元的原子(離子)或原子團稱為基。例如:NaCl,蛋白質(zhì)晶體的基中含一萬個原子,CH4分子晶體CH4分子晶體中作為基元的CH4fcclattice+CH4Crystal=Lattice+Basis【基矢量、格矢量】basisvectors&latticevectorsa1a2a1,a2

為該2元晶格的基矢(量)Rn為格矢(量)Rn晶格中任意格點可用格矢Rn(a1,a2,a3

)表示

Rn=n1a1+n2a2+n3a3

a1,a2,a3

為基矢【原胞】primitivecell

由基矢圍成的六面體為原胞(primitivecell,或primitiveunitcell)其具有以下特征:通過平移用其可以“無縫隙地”填滿整個晶格。原胞只含一個格點(基),即只是八頂角有格點。最小體積。原胞選擇的方式可以不是唯一的,但體積是一定的。Bravais點陣不一定是原胞【

W-S單胞】Wigner-Seitzcell(維格納-賽茨晶胞)【單胞】又稱單位晶胞、晶胞(unitcell)為了更加清楚地表示晶體地對稱關系,常??赡苓x擇更大范圍的六面體作為單位來表示晶胞。通常稱其為單胞。注意:單位晶胞的體積大于或等于原胞。單位胞是原胞體積的整數(shù)倍(2n)。非原胞的單胞可以用原胞來表示,但幾何未必重疊。通常的“晶胞常數(shù)”是指單包。

單胞原胞面心立方的單位胞、原胞及W-S胞體心立方:單胞、原胞、W-S胞面心立方:單胞、原胞、W-S胞2.2Bavais格子及晶系

TheBravaislattices&

crystalsystems晶體的微觀對稱【Bravais

格子與非Bravais

格子】

Bravaislattice&non-Bravaislattice)Bravais格子:所有的格點(latticepoints)是等價的。它是最基本的格子(fundamentaltypeoflattice)三維晶體可能存在的最多格子形式只有14種非Bravais

格子:看成是Bravais格子+

基元而成。也可以看成是多個Bravais格子套裝而成。亞晶格

sublattice如:ZrO2中的氧離子單獨組成的“晶格”稱為“氧離子亞晶格”【14種Bravais格子】

Bravaislattices在14種格子中,按含格點的差異分4種類:P,I,F,

CSimple(primitive):P,Body-centered:I(innenzentrierte),Face-centered:F,Base-centered:CBravaisLatticeCrystalSystemUnitCellaxesangles1Simple三斜Triclinica≠b≠cα≠β≠γ≠90o2Simple單斜Monoclinica≠b≠c3Base-centered4Simple斜方Orthorhombica≠b≠cα=β=γ≠90o

5Base-centered6Body-centered7Face-centered8Simple四方Tetragonala=b≠cα=β=γ=90o9Body-centered10(Simple)三角Trigonal11(Simple)六方Hexagonalα=β=90o,γ=120o12Simple立方Cubica=b=cα=β=γ=90o13Body-centered14Face-centered【七大晶系】The7crystalsystems14種Bravaislattices抽去含格點的不同(P,I,F,C)即得到7大晶系對稱性TUnitCellandreciprocalcellofHexagonalHexagonalcellsHexagonalrepresentation(4axes)Rhombicrepresentation(3axes)2.3.點群與空間群

pointgroupandspacegroup

【對稱操作要素】【點群與點群對稱】【空間群】【對稱操作與要素】

SymmetryOperationsandElements

ASymmetryoperationisanoperationthatcanbeperformedeitherphysicallyorimaginativelythatresultsinnochangeintheappearanceofanobject,including

Rotation,reflection,andinversion

對稱操作完成后晶格保持不變!對稱分類中心對稱(至少一點保持不動)

反演中心條件r→-r晶格保持不變

14種Braivs格子全有inversioncentern度旋轉(zhuǎn)軸鏡面:立方有9鏡面,三斜晶系零鏡面、

n度旋轉(zhuǎn)反演軸非中心對稱螺旋軸(screwaxes)、滑移反映面(gladeplanes)【旋轉(zhuǎn)對稱】RotationalSymmetryn-度旋轉(zhuǎn)軸-n-FoldRotationAxis

2-fold1-fold8-fold5-fold3-fold4-fold6-fold【反映對稱】

MirrorSymmetry

【鏡面】reflectionplanes【反演對稱】

inversion【對稱中心】

CenterofSymmetry

又稱:反演中心(inversioncenter):

Inthisoperationlinesaredrawnfromallpointsontheobjectthroughapointinthecenteroftheobject,calledasymmetrycenter(symbolizedwiththeletter"i").【n度旋轉(zhuǎn)反演軸

】(n-foldrotationaxis)2-fold3-fold6-fold螺旋軸(screwaxes)、

滑移反映面(gladeplanes)【點群與點群對稱】

pointgroupanditssymmetries

在非Bavais點陣中,每一格點有一原子團簇(cluster),即基元(basis),稱為點群。該點群的對稱性稱為點群對稱。

點群對稱特點:有一點始終保持不變。共有32種點群。晶體的宏觀對稱CombinationsofSymmetryOperations

Infact,incrystalsthereare32possiblecombinationsofsymmetryelements.

These32combinationsdefinethe32CrystalClasses.

1

-

4-foldrotationaxis(A4)4-

2-foldrotationaxes(A2),2cuttingthefaces&2cuttingtheedges.5mirrorplanes(m),2cuttingacrossthefaces,2cuttingthroughtheedges,andonecuttinghorizontallythroughthecenter.Notealsothatthereisacenterofsymmetry(i).Thesymmetrycontentofthiscrystalisthus:i,1A4,4A2,5mExternalSymmetryofCrystals,

32CrystalClasses

1Tetragonal41A4Tetragonal-Pyramidal4Tetragonal-disphenoidal4/mi,1A4,1mTetragonal-dipyramidal4221A4,4A2Tetragonal-trapezohedral4mm1A4,4mDitetragonal-pyramidal2m4,2A2,2mTetragonal-scalenohedral4/m2/m2/mi,1A4,4A2,5mDitetragonal-dipyramidal四方晶系所屬7個晶形偏三角面體偏方三八面體【空間群】spacegroup點群對稱+平移對稱(translationsymmetries)

72種空間群72種空間群+螺旋軸和滑移反映面對稱

230種空間群晶體結構與各種微觀及宏觀對稱間的關系

(晶系,Bravais格子,32點群,72及230空間群的關系)7大晶系+格點差異→

14Bravais

格子14Bravais+32點群

→72空間群

72空間群+螺旋軸,滑移反映→230空間群2.4.格點、晶向、晶面及密勒指數(shù)

Crystalpoints,directions,crystalplanes

andMillerIndices【格點指數(shù)】【晶向指數(shù)】Orthorhombicunitcell.(a)Indicesofpoint(b)Indicesofdirections.【晶向指數(shù)】CrystaldirectionsRn=n1a+n2b+n3c[n1n2n3

]

如有共同系數(shù)則約去:[111]注意:不是指特定的通過原點的直線,而是所有同方向的線。<100>則表示等價的方向“晶向族”:[100][][][100][010][001]指數(shù)越高,線密度越小?!久芾罩笖?shù)】MillerIndices

就是晶面指數(shù)(hkl)planeindices方法:(a/xb/yc/z)

注意:不是指特定的面,而是所有平行的面。{hkl

}則表示等價的方向“晶面族”:(100)(100)(010)(001)指數(shù)越高,面密度越小,面間距dhkl也越小MillerIndices

(hkl)

Step1:

Identifytheinterceptsonthex-,y-andz-axes.Intercepts:

a,∞,∞Step2:

Specifytheinterceptsinfractionalco-ordinatesCo-ordinatesareconvertedtofractionalco-ordinatesbydividingbytherespectivecell-dimension-forexample,apoint(x,y,z)inaunitcellofdimensions

axbxc

hasfractionalco-ordinatesof(x/a,y/b,z/c).Inthecaseofacubicunitcelleachco-ordinatewillsimplybedividedbythecubiccellconstant,a.ThisgivesFractionalIntercepts:

a/a,¥/a,¥/a

i.e.

1,¥,¥Step3:

TakethereciprocalsofthefractionalinterceptsThisfinalmanipulationgeneratestheMillerIndiceswhich(byconvention)shouldthenbespecifiedwithoutbeingseparatedbyanycommasorothersymbols.TheMillerIndicesarealsoenclosedwithinstandardbrackets(….)whenoneisspecifyingauniquesurfacesuchasthatbeingconsideredhere.Thereciprocalsof1and¥are1and0respectively,thusyieldingMillerIndices:

(100)陶瓷晶體的結構特點?CrystalStructuresfromanionpackingCeramiccrystalstructurescan

oftenbeconsideredasclose-packedanionstructureswithcationsininterstitialholes?2typesofhole–TetrahedralorOctahedral(larger)?2typesofpacking–FCCorHCP?Examples–NaCl–FCCanionpacking,cationsinoctahedralholes–ZnS–FCCanionpackingwithcationsintetrahedralholes–Al2O3–HCPanionpackingwithAlin2/3octahedralsites【NaCl結構】RocksaltstructureAnionlattice:FCCCationfilling:alloctahedralsitesTherC/rA:0.414~0.732Stoichiometry:MXExample:NaCl,KCl,LiF,MgO,CaO,SrO,NiO,CoO,MnO,PbO,etal.2.5.

典型的晶體結構

Typicalcrystalstructures【CsCl結構】【Diamond與ZnS結構】纖鋅礦結構【鈣鈦礦結構

】CaTiO3結構ABO3BaTiO3TetragonalBaTiO3(below120oC):astructureleadingtoitspiezoelectricity.Diagramshowinghowpiezoelectricmaterialworks【熒石結構

Fluoritestructure

(反熒石結構

Antifluoritestructure)FCaZrO【

ZrO2】ZrOZrOZrOZrOZrO2中存在大量的”空位”!OZrElectrolyteMaterialsI:ZrO2(YSZ)

Verylowelectronicconduction

(bandgap:>7eV)VeryhighthermodynamicstabilityEasilydopedwithlowervalencecations(e.g.Ca2+,Y3+,Sc3+)tocreateoxygenvacanciesDopedmaterialishighlyoxideionconductive>0.1Ω-1cm-1at1000oC)ThegeneralformulahastheformAO2,whereAisusuallyabigtetravalentcation,e.g.U,Th,Ce.SinceZr4+istoosmalltosustainthefluoritestructureatlowtemperatures,ithastobepartlysubstitutedwithalargercation,calleddopant.Dopinginvolvesusuallysubstitutinglowervalencecationsintothelattice.Inordertomaintainchargeneutralityoxygenvacancieshavetobeintroduced,whichallowoxygenionmigration.Fluoritestructure

andZrO2(YSZ)OZrFluoritestructure

andZrO2(YSZ)OZrYZirconia(zirconiumdioxide,ZrO2)initspureformhasahighmeltingtemperatureandalowthermalconductivity.Theapplicationsofpurezirconiaarerestrictedbecauseitshowspolymorphism.Itismonoclinicatroomtemperatureandchangestothedensertetragonalphasefromcirca1000

°C.Thisinvolvesalargechangeinthevolumeandcausesextensivecracking.Hencezirconiahasalowthermalshockresistivity.Theadditionofsomeoxidesresultsinstabilisingthecubicphaseandthecreationofoneoxygenvacancy.Partiallystabilizedzirconia(PSZ)isamixtureofzirconiapolymorphs:acubicandametastabletetragonalZrO2phaseisobtained,sinceaninsufficientamountofstabilizerhasbeenadded.PSZisalsocalledtetragonalzirconiapolycrystal:TZP.PSZisatransformation-toughenedmaterialsincetheinducedmicrocracksandstressfieldsabsorbenergy.PSZisusedforcruciblesbecauseithasalowthermalconductivityandahighmeltingtemperature.Theadditionof16

mol%CaOor16

mol%MgOor8

mol%Y2O3(8YSZ)isenoughtoformfullystabilizedzirconia.Thestructurebecomescubicsolidsolution,whichhasnophasetransformationwhenheatingfromroomtemperatureupto2500

°C.Becauseofitshighoxideionconductivity,YSZisoftenusedforoxygensensoringandsolidoxidefuelcells.FurtherReading

IonicconductionandcrystalstructureIonicconductiondependsonthemobilityoftheionsandthereforeontemperature.Athightemperatures,theconductivitycanreach1

S

cm-1,whichisofthesameorderofmagnitudeasforliquidelectrolytes.Thecrystalhastocontainunoccupiedsitesthatareequivalenttotheoccupiedsitesbylatticeoxygenions.Theenergybarrierformigrationfromanoccupiedsitetoanunoccupiedsitemustbesmall(≤1

eV).Thismightseemunusualsincetherelativesizeoftheoxygenionsisbiganditseemsmorelikelythatthesmallermetalionsmigrateinanelectricfield.Thatiswhythereareonlyafewspecialstructuresthatmakeoxygenionmigrationpossible:

fluoriteandperovskitesoxides.【

Al2O3】AlORutileTiO2【金紅石結構】Rutilestructure2.6.倒格子與布里淵區(qū)

Reciprocallattices&BrillouinZone定義:以晶格a1,a2,a3,

為基矢的R格矢,可定義另一組矢量為:

b1=2π/V(a2×a3

b2=2π/V(a1×a3

b3=2π/V(a2×a1

V=a·(a2×a3

)由矢量b1、

b2、b3構成的

G=n1b1+n2b2+n3

b3

稱R的倒格子,而b1、

b2、b3則稱為倒基矢,而原晶格則稱為正格子(directlattices,reallattices)。由G構成的空間稱為倒空間?!镜垢褡印康垢褡拥奶卣鳎海ńY論)

倒格子的特征:所有晶體結構都存在相應的倒格子,與正格子具有同樣的對稱性必屬同一晶系,但可以是不同的Bravais格子,如bcc與fcc.正格子倒格子V=a1·(a2×a3

)六方格子的倒格子仍舊是六方格子,但方向改變了。正格子倒格子fcc與bcc互為倒格子正格子倒格子【布里淵區(qū)】BrillouinZone定義:W-S胞的倒格子即為第一Brillouin區(qū)(FirstBrillouinZone)。特點:倒空間原胞與W-S胞同樣是格點在中心。bcc與fcc互為倒格子包含所有的基本信息二維WS胞及BrillouinZone【幾何空間】

晶體學(crystallography)【狀態(tài)空間】

就是倒空間又稱k空間,在固體物理學中用于描述電子(electron)、光子(photon)、聲子(phonon)等在晶體中的狀態(tài)和行為【幾何空間與狀態(tài)空間】Whyreciprocallattice?Electronwaveslikeallwavesexperiencediffractioneffectsinperiodicstructureslikecrystals.Thisisbestdescribedinthereciprocallatticeofthecrystalinquestion.Thereareseveralwaystoconstructareciprocallatticefromaspacelattice.

Definitionsofthereciprocallatticeinthreeways:1.

ThereciprocallatticeistheFouriertransformofthespacelattice.

2.Thereciprocallatticewithanelementarycell(EC)asdefinedbythebasevectors

b1,2,3isobtainedformthespacelatticeasdefinedbyitsbasevectorsa1,2,3bytheequations3.Thebasevectorsofthereciprocallatticecanbeconstructedbydrawingve

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論