版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023年高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若,滿足約束條件,則的取值范圍為()A. B. C. D.2.如圖是計(jì)算值的一個(gè)程序框圖,其中判斷框內(nèi)應(yīng)填入的條件是()A.B.C.D.3.某幾何體的三視圖如圖所示,若圖中小正方形的邊長均為1,則該幾何體的體積是A. B. C. D.4.設(shè)實(shí)數(shù)x,y滿足條件x+y-2?02x-y+3?0x-y?0則A.1 B.2 C.3 D.45.已知定義在上的奇函數(shù)滿足,且當(dāng)時(shí),,則()A.1 B.-1 C.2 D.-26.網(wǎng)格紙上小正方形邊長為1單位長度,粗線畫出的是某幾何體的三視圖,則此幾何體的體積為()A.1 B. C.3 D.47.“學(xué)習(xí)強(qiáng)國”學(xué)習(xí)平臺(tái)是由中宣部主管,以深入學(xué)習(xí)宣傳新時(shí)代中國特色社會(huì)主義思想為主要內(nèi)容,立足全體黨員?面向全社會(huì)的優(yōu)質(zhì)平臺(tái),現(xiàn)日益成為老百姓了解國家動(dòng)態(tài)?緊跟時(shí)代脈搏的熱門?該款軟件主要設(shè)有“閱讀文章”?“視聽學(xué)習(xí)”兩個(gè)學(xué)習(xí)模塊和“每日答題”?“每周答題”?“專項(xiàng)答題”?“挑戰(zhàn)答題”四個(gè)答題模塊?某人在學(xué)習(xí)過程中,“閱讀文章”不能放首位,四個(gè)答題板塊中有且僅有三個(gè)答題板塊相鄰的學(xué)習(xí)方法有()A.60 B.192 C.240 D.4328.的展開式中,項(xiàng)的系數(shù)為()A.-23 B.17 C.20 D.639.如圖網(wǎng)格紙上小正方形的邊長為,粗線畫出的是某幾何體的三視圖,則該幾何體的所有棱中最長棱的長度為()A. B. C. D.10.已知集合,,則中元素的個(gè)數(shù)為()A.3 B.2 C.1 D.011.過點(diǎn)的直線與曲線交于兩點(diǎn),若,則直線的斜率為()A. B.C.或 D.或12.已知集合,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)在定義域R上的導(dǎo)函數(shù)為,若函數(shù)沒有零點(diǎn),且,當(dāng)在上與在R上的單調(diào)性相同時(shí),則實(shí)數(shù)k的取值范圍是______.14.在中,角,,所對的邊分別邊,且,設(shè)角的角平分線交于點(diǎn),則的值最小時(shí),___.15.若函數(shù)在和上均單調(diào)遞增,則實(shí)數(shù)的取值范圍為________.16.已知,,且,則的最小值是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),(1)求函數(shù)的單調(diào)區(qū)間;(2)當(dāng)時(shí),判斷函數(shù),()有幾個(gè)零點(diǎn),并證明你的結(jié)論;(3)設(shè)函數(shù),若函數(shù)在為增函數(shù),求實(shí)數(shù)的取值范圍.18.(12分)如圖,三棱柱ABC-A1B1C1中,側(cè)面BCC1B1是菱形,AC=BC=2,∠CBB1=,點(diǎn)A在平面BCC1B1上的投影為棱BB1的中點(diǎn)E.(1)求證:四邊形ACC1A1為矩形;(2)求二面角E-B1C-A1的平面角的余弦值.19.(12分)如圖所示,四棱柱中,底面為梯形,,,,,,.(1)求證:;(2)若平面平面,求二面角的余弦值.20.(12分)如圖,四棱錐中,底面,,點(diǎn)在線段上,且.(1)求證:平面;(2)若,,,,求二面角的正弦值.21.(12分)已知分別是內(nèi)角的對邊,滿足(1)求內(nèi)角的大?。?)已知,設(shè)點(diǎn)是外一點(diǎn),且,求平面四邊形面積的最大值.22.(10分)已知函數(shù).(1)若,且,求證:;(2)若時(shí),恒有,求的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
根據(jù)約束條件作出可行域,找到使直線的截距取最值得點(diǎn),相應(yīng)坐標(biāo)代入即可求得取值范圍.【詳解】畫出可行域,如圖所示:由圖可知,當(dāng)直線經(jīng)過點(diǎn)時(shí),取得最小值-5;經(jīng)過點(diǎn)時(shí),取得最大值5,故.故選:B【點(diǎn)睛】本題考查根據(jù)線性規(guī)劃求范圍,屬于基礎(chǔ)題.2、B【解析】
根據(jù)計(jì)算結(jié)果,可知該循環(huán)結(jié)構(gòu)循環(huán)了5次;輸出S前循環(huán)體的n的值為12,k的值為6,進(jìn)而可得判斷框內(nèi)的不等式.【詳解】因?yàn)樵摮绦驁D是計(jì)算值的一個(gè)程序框圈所以共循環(huán)了5次所以輸出S前循環(huán)體的n的值為12,k的值為6,即判斷框內(nèi)的不等式應(yīng)為或所以選C【點(diǎn)睛】本題考查了程序框圖的簡單應(yīng)用,根據(jù)結(jié)果填寫判斷框,屬于基礎(chǔ)題.3、B【解析】該幾何體是直三棱柱和半圓錐的組合體,其中三棱柱的高為2,底面是高和底邊均為4的等腰三角形,圓錐的高為4,底面半徑為2,則其體積為,.故選B點(diǎn)睛:由三視圖畫出直觀圖的步驟和思考方法:1、首先看俯視圖,根據(jù)俯視圖畫出幾何體地面的直觀圖;2、觀察正視圖和側(cè)視圖找到幾何體前、后、左、右的高度;3、畫出整體,然后再根據(jù)三視圖進(jìn)行調(diào)整.4、C【解析】
畫出可行域和目標(biāo)函數(shù),根據(jù)目標(biāo)函數(shù)的幾何意義平移得到答案.【詳解】如圖所示:畫出可行域和目標(biāo)函數(shù),z=x+y+1,即y=-x+z-1,z表示直線在y軸的截距加上1,根據(jù)圖像知,當(dāng)x+y=2時(shí),且x∈-13,1時(shí),故選:C.【點(diǎn)睛】本題考查了線性規(guī)劃問題,畫出圖像是解題的關(guān)鍵.5、B【解析】
根據(jù)f(x)是R上的奇函數(shù),并且f(x+1)=f(1-x),便可推出f(x+4)=f(x),即f(x)的周期為4,而由x∈[0,1]時(shí),f(x)=2x-m及f(x)是奇函數(shù),即可得出f(0)=1-m=0,從而求得m=1,這樣便可得出f(2019)=f(-1)=-f(1)=-1.【詳解】∵是定義在R上的奇函數(shù),且;∴;∴;∴的周期為4;∵時(shí),;∴由奇函數(shù)性質(zhì)可得;∴;∴時(shí),;∴.故選:B.【點(diǎn)睛】本題考查利用函數(shù)的奇偶性和周期性求值,此類問題一般根據(jù)條件先推導(dǎo)出周期,利用函數(shù)的周期變換來求解,考查理解能力和計(jì)算能力,屬于中等題.6、A【解析】
采用數(shù)形結(jié)合,根據(jù)三視圖可知該幾何體為三棱錐,然后根據(jù)錐體體積公式,可得結(jié)果.【詳解】根據(jù)三視圖可知:該幾何體為三棱錐如圖該幾何體為三棱錐,長度如上圖所以所以所以故選:A【點(diǎn)睛】本題考查根據(jù)三視圖求直觀圖的體積,熟悉常見圖形的三視圖:比如圓柱,圓錐,球,三棱錐等;對本題可以利用長方體,根據(jù)三視圖刪掉沒有的點(diǎn)與線,屬中檔題.7、C【解析】
四個(gè)答題板塊中選三個(gè)捆綁在一起,和另外一個(gè)答題板塊用插入法.注意按“閱讀文章”分類.【詳解】四個(gè)答題板塊中選三個(gè)捆綁在一起,和另外一個(gè)答題板塊用插入法,由于“閱讀文章”不能放首位,因此不同的方法數(shù)為.故選:C.【點(diǎn)睛】本題考查排列組合的應(yīng)用,考查捆綁法和插入法求解排列問題.對相鄰問題用捆綁法,不相鄰問題用插入法是解決這類問題的常用方法.8、B【解析】
根據(jù)二項(xiàng)式展開式的通項(xiàng)公式,結(jié)合乘法分配律,求得的系數(shù).【詳解】的展開式的通項(xiàng)公式為.則①出,則出,該項(xiàng)為:;②出,則出,該項(xiàng)為:;③出,則出,該項(xiàng)為:;綜上所述:合并后的項(xiàng)的系數(shù)為17.故選:B【點(diǎn)睛】本小題考查二項(xiàng)式定理及展開式系數(shù)的求解方法等基礎(chǔ)知識(shí),考查理解能力,計(jì)算能力,分類討論和應(yīng)用意識(shí).9、C【解析】
利用正方體將三視圖還原,觀察可得最長棱為AD,算出長度.【詳解】幾何體的直觀圖如圖所示,易得最長的棱長為故選:C.【點(diǎn)睛】本題考查了三視圖還原幾何體的問題,其中利用正方體作襯托是關(guān)鍵,屬于基礎(chǔ)題.10、C【解析】
集合表示半圓上的點(diǎn),集合表示直線上的點(diǎn),聯(lián)立方程組求得方程組解的個(gè)數(shù),即為交集中元素的個(gè)數(shù).【詳解】由題可知:集合表示半圓上的點(diǎn),集合表示直線上的點(diǎn),聯(lián)立與,可得,整理得,即,當(dāng)時(shí),,不滿足題意;故方程組有唯一的解.故.故選:C.【點(diǎn)睛】本題考查集合交集的求解,涉及圓和直線的位置關(guān)系的判斷,屬基礎(chǔ)題.11、A【解析】
利用切割線定理求得,利用勾股定理求得圓心到弦的距離,從而求得,結(jié)合,求得直線的傾斜角為,進(jìn)而求得的斜率.【詳解】曲線為圓的上半部分,圓心為,半徑為.設(shè)與曲線相切于點(diǎn),則所以到弦的距離為,,所以,由于,所以直線的傾斜角為,斜率為.故選:A【點(diǎn)睛】本小題主要考查直線和圓的位置關(guān)系,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.12、C【解析】
解不等式得出集合A,根據(jù)交集的定義寫出A∩B.【詳解】集合A={x|x2﹣2x﹣30}={x|﹣1x3},,故選C.【點(diǎn)睛】本題考查了解不等式與交集的運(yùn)算問題,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由題意可知:為上的單調(diào)函數(shù),則為定值,由指數(shù)函數(shù)的性質(zhì)可知為上的增函數(shù),則在,單調(diào)遞增,求導(dǎo),則恒成立,則,根據(jù)函數(shù)的正弦函數(shù)的性質(zhì)即可求得的取值范圍.【詳解】若方程無解,則或恒成立,所以為上的單調(diào)函數(shù),都有,則為定值,設(shè),則,易知為上的增函數(shù),,,又與的單調(diào)性相同,在上單調(diào)遞增,則當(dāng),,恒成立,當(dāng),時(shí),,,,,,此時(shí),故答案為:【點(diǎn)睛】本題考查導(dǎo)數(shù)的綜合應(yīng)用,考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)性,正弦函數(shù)的性質(zhì),輔助角公式,考查計(jì)算能力,屬于中檔題.14、【解析】
根據(jù)題意,利用余弦定理和基本不等式得出,再利用正弦定理,即可得出.【詳解】因?yàn)?,則,由余弦定理得:,當(dāng)且僅當(dāng)時(shí)取等號(hào),又因?yàn)?,,所?故答案為:.【點(diǎn)睛】本題考查余弦定理和正弦定理的應(yīng)用,以及基本不等式求最值,考查計(jì)算能力.15、【解析】
化簡函數(shù),求出在上的單調(diào)遞增區(qū)間,然后根據(jù)在和上均單調(diào)遞增,列出不等式求解即可.【詳解】由知,當(dāng)時(shí),在和上單調(diào)遞增,在和上均單調(diào)遞增,,
,
的取值范圍為:.
故答案為:.【點(diǎn)睛】本題主要考查了三角函數(shù)的圖象與性質(zhì),關(guān)鍵是根據(jù)函數(shù)的單調(diào)性列出關(guān)于m的方程組,屬中檔題.16、8【解析】
由整體代入法利用基本不等式即可求得最小值.【詳解】,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.故的最小值為8,故答案為:8.【點(diǎn)睛】本題考查基本不等式求和的最小值,整體代入法,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)單調(diào)增區(qū)間,單調(diào)減區(qū)間為,;(2)有2個(gè)零點(diǎn),證明見解析;(3)【解析】
對函數(shù)求導(dǎo),利用導(dǎo)數(shù)的正負(fù)判斷函數(shù)的單調(diào)區(qū)間即可;函數(shù)有2個(gè)零點(diǎn).根據(jù)函數(shù)的零點(diǎn)存在性定理即可證明;記函數(shù),求導(dǎo)后利用單調(diào)性求得,由零點(diǎn)存在性定理及單調(diào)性知存在唯一的,使,求得為分段函數(shù),求導(dǎo)后分情況討論:①當(dāng)時(shí),利用函數(shù)的單調(diào)性將問題轉(zhuǎn)化為的問題;②當(dāng)時(shí),當(dāng)時(shí),在上恒成立,從而求得的取值范圍.【詳解】(1)由題意知,,列表如下:020極小值極大值所以函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為,.(2)函數(shù)有2個(gè)零點(diǎn).證明如下:因?yàn)闀r(shí),所以,因?yàn)?所以在恒成立,在上單調(diào)遞增,由,,且在上單調(diào)遞增且連續(xù)知,函數(shù)在上僅有一個(gè)零點(diǎn),由(1)可得時(shí),,即,故時(shí),,所以,由得,平方得,所以,因?yàn)?,所以在上恒成?所以函數(shù)在上單調(diào)遞減,因?yàn)?所以,由,,且在上單調(diào)遞減且連續(xù)得在上僅有一個(gè)零點(diǎn),綜上可知:函數(shù)有2個(gè)零點(diǎn).(3)記函數(shù),下面考察的符號(hào).求導(dǎo)得.當(dāng)時(shí)恒成立.當(dāng)時(shí),因?yàn)?,所以.∴在上恒成立,故在上單調(diào)遞減.∵,∴,又因?yàn)樵谏线B續(xù),所以由函數(shù)的零點(diǎn)存在性定理得存在唯一的,使,∴,因?yàn)?所以∴因?yàn)楹瘮?shù)在上單調(diào)遞增,,所以在,上恒成立.①當(dāng)時(shí),在上恒成立,即在上恒成立.記,則,當(dāng)變化時(shí),,變化情況如下表:極小值∴,故,即.②當(dāng)時(shí),,當(dāng)時(shí),在上恒成立.綜合(1)(2)知,實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間、極值、最值和利用零點(diǎn)存在性定理判斷函數(shù)零點(diǎn)個(gè)數(shù)、利用分離參數(shù)法求參數(shù)的取值范圍;考查轉(zhuǎn)化與化歸能力、邏輯推理能力、運(yùn)算求解能力;通過構(gòu)造函數(shù),利用零點(diǎn)存在性定理判斷其零點(diǎn),從而求出函數(shù)的表達(dá)式是求解本題的關(guān)鍵;屬于綜合型強(qiáng)、難度大型試題.18、(1)見解析(2)【解析】
(1)通過勾股定理得出,又,進(jìn)而可得平面,則可得到,問題得證;(2)如圖,以為原點(diǎn),,,所在直線分別為軸,軸,軸,求出平面的法向量和平面的法向量,利用空間向量的夾角公式可得答案.【詳解】(1)因?yàn)槠矫?,所以,又因?yàn)?,,,所以,因此,所以,因此平面,所以,從而,又四邊形為平行四邊形,則四邊形為矩形;(2)如圖,以為原點(diǎn),,,所在直線分別為軸,軸,軸,所以,平面的法向量,設(shè)平面的法向量,由,由,令,即,所以,,所以,所求二面角的余弦值是.【點(diǎn)睛】本題考查空間垂直關(guān)系的證明,考查向量法求二面角的大小,考查學(xué)生計(jì)算能力,是中檔題.19、(1)證明見解析(2)【解析】
(1)取中點(diǎn)為,連接,,,,根據(jù)線段關(guān)系可證明為等邊三角形,即可得;由為等邊三角形,可得,從而由線面垂直判斷定理可證明平面,即可證明.(2)以為原點(diǎn),,,為,,軸建立空間直角坐標(biāo)系,寫出各個(gè)點(diǎn)的坐標(biāo),并求得平面和平面的法向量,即可由法向量法求得二面角的余弦值.【詳解】(1)證明:取中點(diǎn)為,連接,,,如下圖所示:因?yàn)?,,,所以,故為等邊三角形,則.連接,因?yàn)椋?,所以為等邊三角形,則.又,所以平面.因?yàn)槠矫?,所?(2)由(1)知,因?yàn)槠矫嫫矫?,平面,所以平面,以為原點(diǎn),,,為,,軸建立如圖所示的空間直角坐標(biāo)系,易求,則,,,,則,,.設(shè)平面的法向量,則即令,則,,故.設(shè)平面的法向量,則則令,則,,故,所以.由圖可知,二面角為鈍二面角角,所以二面角的余弦值為.【點(diǎn)睛】本題考查線面垂直的判定,由線面垂直判定線線垂直,由空間向量法求平面與平面形成二面角的大小,屬于中檔題.20、(1)證明見解析(2)【解析】
(1)要證明平面,只需證明,,即可求得答案;(2)先根據(jù)已知證明四邊形為矩形,以為原點(diǎn),為軸,為軸,為軸,建立坐標(biāo)系,求得平面的法向量為,平面的法向量,設(shè)二面角的平面角為,,即可求得答案.【詳解】(1)平面,平面,.,,.又,平面.(2)由(1)可知.在中,,..又,,四邊形為矩形.以為原點(diǎn),為軸,為軸,為軸,建立坐標(biāo)系,如圖:則:,,,,:,設(shè)平面的法向量為,即,令,則,由題平面,即平面的法向量為由二面角的平面角為銳角,設(shè)二面角的平面角為即二面角的正弦值為:.【點(diǎn)睛】本題主要考查了求證線面垂直和向量法求二面角,解題關(guān)鍵是掌握線面垂直判斷定理和向量法求二面角的方法,考查了分析能力和計(jì)算能力,屬于中檔題.21、(1)(2)【解析】
(1)首先利用誘
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024至2030年分析診斷報(bào)告軟件項(xiàng)目投資價(jià)值分析報(bào)告
- 陜西能源職業(yè)技術(shù)學(xué)院《氣力輸送與廠內(nèi)運(yùn)輸》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年鋼塑共擠門項(xiàng)目可行性研究報(bào)告
- 陜西旅游烹飪職業(yè)學(xué)院《紀(jì)錄片賞析與制作》2023-2024學(xué)年第一學(xué)期期末試卷
- 陜西理工大學(xué)《工廠供電技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 陜西科技大學(xué)鎬京學(xué)院《計(jì)算機(jī)網(wǎng)絡(luò)入侵檢測技術(shù)概論》2023-2024學(xué)年第一學(xué)期期末試卷
- 空房軟裝出租合同范例
- 個(gè)人樓房建設(shè)合同范例
- 廣告店 用工合同范例
- 2024年版中外雙方合同解除條款詳細(xì)合同版B版
- 2024-2025學(xué)年浙江省九年級(jí)科學(xué)上冊期末練習(xí)卷
- 金銀花生產(chǎn)技術(shù)規(guī)程DB41-T 2187-2021
- 湘教版八年級(jí)美術(shù)期末試卷
- 骨科醫(yī)療質(zhì)量管理與持續(xù)改進(jìn)工作總結(jié)報(bào)告
- 主播競業(yè)限制協(xié)議
- 四川省瀘州市高2023級(jí)高一學(xué)年末統(tǒng)一考試+語文
- 2024-2030年中國無人機(jī)(UAV)行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略分析報(bào)告
- (高立牌)SC型施工升降機(jī)說明書
- 母嬰購貨合同范本
- 茶葉風(fēng)味科學(xué)-制茶與評(píng)茶智慧樹知到期末考試答案章節(jié)答案2024年浙江大學(xué)
- 光的偏振課件
評(píng)論
0/150
提交評(píng)論