版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.在△ABC中,∠A=120°,AB=4,AC=2,則sinB的值是()A. B. C. D.2.如圖,在中,點,,分別在邊,,上,且,,若,則的值為()A. B. C. D.3.如圖,一邊靠墻(墻有足夠長),其它三邊用12m長的籬笆圍成一個矩形(ABCD)花園,這個花園的最大面積是()A.16m2 B.12m2 C.18m2 D.以上都不對4.2018年某市初中學業(yè)水平實驗操作考試,要求每名學生從物理、化學、生物三個學科中隨機抽取一科參加測試,小華和小強都抽到物理學科的概率是().A. B. C. D.5.下列說法中,正確的是()A.被開方數(shù)不同的二次根式一定不是同類二次根式;B.只有被開方數(shù)完全相同的二次根式才是同類二次根式;C.和是同類二次根式;D.和是同類二次根式.6.三角形的兩邊長分別為3和2,第三邊的長是方程的一個根,則這個三角形的周長是()A.10 B.8或7 C.7 D.87.如圖,在正方形ABCD中,E為AB的中點,G,F(xiàn)分別為AD、BC邊上的點,若AG=1,BF=2,∠GEF=90°,則GF的長為()A.2 B.3 C.4 D.58.已知點P(a,m),Q(b,n)都在反比例函數(shù)y=的圖象上,且a<0<b,則下列結論一定正確的是()A.m+n<0 B.m+n>0 C.m<n D.m>n9.已知拋物線y=ax2+bx+c(b>a>0)與x軸最多有一個交點,現(xiàn)有以下四個結論:①該拋物線的對稱軸在y軸左側(cè);②關于x的方程ax2+bx+c+2=0無實數(shù)根;③a﹣b+c≥0;④的最小值為1.其中,正確結論的個數(shù)為()A.1個 B.2個 C.1個 D.4個10.一元二次方程x2-8x-1=0配方后為()A.(x-4)2=17 B.(x+4)2=15C.(x+4)2=17 D.(x-4)2=17或(x+4)2=1711.如圖,在矩形ABCD中(AD>AB),點E是BC上一點,且DE=DA,AF⊥DE,垂足為點F,在下列結論中,不一定正確的是()A.△AFD≌△DCE B.AF=ADC.AB=AF D.BE=AD﹣DF12.在平面直角坐標系中,點P(﹣1,2)關于原點的對稱點的坐標為()A.(﹣1,﹣2)B.(1,﹣2)C.(2,﹣1)D.(﹣2,1)二、填空題(每題4分,共24分)13.如圖,⊙O是△ABC的外接圓,∠A=30°,BC=4,則⊙O的直徑為___.14.邊長為4cm的正三角形的外接圓半徑長是_____cm.15.小球在如圖6所示的地板上自由滾動,并隨機停留在某塊正方形的地磚上,則它停在白色地磚上的概率是____.
16.二次函數(shù)(其中m>0),下列命題:①該圖象過點(6,0);②該二次函數(shù)頂點在第三象限;③當x>3時,y隨x的增大而增大;④若當x<n時,都有y隨x的增大而減小,則.正確的序號是____________.17.雙曲線y1、y2在第一象限的圖象如圖,,過y1上的任意一點A,作x軸的平行線交y2于B,交y軸于C,若S△AOB=1,則y2的解析式是18.用正五邊形鋼板制作一個邊框總長為40cm的五角星(如圖),則正五邊形的邊長為cm(保留根號)__________.三、解答題(共78分)19.(8分)如圖,在正方形中,點是的中點,連接,過點作交于點,交于點.(1)證明:;(2)連接,證明:.20.(8分)如圖,已知在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC邊于點D,以AB上點O為圓心作⊙O,使⊙O經(jīng)過點A和點D.(1)判斷直線BC與⊙O的位置關系,并說明理由;(2)若AE=6,劣弧DE的長為π,求線段BD,BE與劣弧DE所圍成的陰影部分的面積(結果保留根號和π).21.(8分)先化簡,再求值:,其中x=1﹣.22.(10分)已知關于的一元二次方程有兩個不相等的實數(shù)根(1)求的取值范圍;(2)若為正整數(shù),且該方程的根都是整數(shù),求的值.23.(10分)小明準備進行如下操作實驗:把一根長為的鐵絲剪成兩段,并把每一段圍成一個正方形.(1)要使這兩個正方形的面積之和等于,小明該怎么剪?(2)小剛對小明說:“這兩個正方形的面積之和不可能等于.”小剛的說法對嗎?請說明理由.24.(10分)解方程(1)2x2﹣7x+3=1;(2)x2﹣3x=1.25.(12分)某商場銷售一批名牌襯衫,平均每天可售出20件,每件盈利44元,為了擴大銷售,增加盈利,盡快減少庫存,商場決定采取適當?shù)慕祪r措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價1元,商場平均每天可多售出5件.(1)若商場平均每天要盈利1600元,每件襯衫應降價多少元?(2)若該商場要每天盈利最大,每件襯衫應降價多少元?盈利最大是多少元?26.如圖,點E在的中線BD上,.(1)求證:;(2)求證:.
參考答案一、選擇題(每題4分,共48分)1、B【解析】試題解析:延長BA過點C作CD⊥BA延長線于點D,∵∠CAB=120°,∴∠DAC=60°,∴∠ACD=30°,∵AB=4,AC=2,∴AD=1,CD=,BD=5,∴BC==2,∴sinB=.故選B.2、A【分析】根據(jù),得到AC=3EC,則AE=2EC,再根據(jù),得到△ADE∽△EFC,再根據(jù)面積之比等于相似比的平方即可求解.【詳解】∵,∴AB:BD=AC:EC,又∵∴AC=3EC,∴AE=2EC,∵,∴∠AED=∠C,∠ADE=∠B=∠EFC,∴△ADE∽△EFC又AE=2EC∴=(2:1)2=4:1故選A.【點睛】本題考查了相似三角形的判定和性質(zhì),熟練掌握相似三角形的判定和性質(zhì)是解題的關鍵.3、C【分析】設AB邊為x,則BC邊為(12-2x),根據(jù)矩形的面積可列二次函數(shù),再求出最大值即可.【詳解】設AB邊為x,則BC邊為(12-2x),則矩形ABCD的面積y=x(12-2x)=-2(x-3)2+18,∴當x=3時,面積最大為18,選C.【點睛】此題主要考察二次函數(shù)的應用,正確列出函數(shù)是解題的關鍵.4、D【分析】直接利用樹狀圖法列舉出所有的可能,進而利用概率公式求出答案.【詳解】解:如圖所示:一共有9種可能,符合題意的有1種,故小華和小強都抽到物理學科的概率是:,故選D.【點睛】此題主要考查了樹狀圖法求概率,正確列舉出所有可能是解題關鍵.5、D【分析】根據(jù)同類二次根式的定義逐項分析即可.【詳解】解:A、被開方數(shù)不同的二次根式若化簡后被開方數(shù)相同,就是同類二次根式,故不正確;B.化成最簡二次根式后,被開方數(shù)完全相同的二次根式才是同類二次根式,故不正確;C.和的被開方數(shù)不同,不是同類二次根式,故不正確;D.=和=,是同類二次根式,正確故選D.【點睛】本題考查了同類二次根式的定義,熟練掌握同類二次根式的定義是解答本題的關鍵.化成最簡二次根式后,如果被開方式相同,那么這幾個二次根式叫做同類二次根式.6、B【分析】因式分解法解方程求得x的值,再根據(jù)三角形的三邊關系判斷能否構成三角形,最后求出周長即可.【詳解】解:∵,∴(x-2)(x-3)=0,∴x-2=0或x-3=0,解得:x=2或x=3,當x=2時,三角形的三邊2+2>3,可以構成三角形,周長為3+2+2=7;當x=3時,三角形的三邊滿足3+2>3,可以構成三角形,周長為3+2+3=8,故選:B.【點睛】本題主要考查解一元二次方程的能力和三角形三邊的關系,熟練掌握解一元二次方程的幾種常用方法:直接開平方法、因式分解法、公式法、配方法,結合方程的特點選擇合適、簡便的方法是解題的關鍵.7、B【解析】∵四邊形ABCD是正方形,∴∠A=∠B=90°,∴∠AGE+∠AEG=90°,∠BFE+∠FEB=90°,∵∠GEF=90°,∴∠GEA+∠FEB=90°,∴∠AGE=∠FEB,∠AEG=∠EFB,∴△AEG∽△BFE,∴,又∵AE=BE,∴AE2=AG?BF=2,∴AE=(舍負),∴GF2=GE2+EF2=AG2+AE2+BE2+BF2=1+2+2+4=9,∴GF的長為3,故選B.【點睛】本題考查了相似三角形的性質(zhì)的應用,利用勾股定理即可得解,解題的關鍵是證明△AEG∽△BFE.8、D【解析】根據(jù)反比例函數(shù)的性質(zhì),可得答案.【詳解】∵y=?的k=-2<1,圖象位于二四象限,a<1,∴P(a,m)在第二象限,∴m>1;∵b>1,∴Q(b,n)在第四象限,∴n<1.∴n<1<m,即m>n,故D正確;故選D.【點睛】本題考查了反比例函數(shù)的性質(zhì),利用反比例函數(shù)的性質(zhì):k<1時,圖象位于二四象限是解題關鍵.9、D【解析】本題考察二次函數(shù)的基本性質(zhì),一元二次方程根的判別式等知識點.【詳解】解:∵,∴拋物線的對稱軸<0,∴該拋物線的對稱軸在軸左側(cè),故①正確;∵拋物線與軸最多有一個交點,∴∴關于的方程中∴關于的方程無實數(shù)根,故②正確;∵拋物線與軸最多有一個交點,∴當時,≥0正確,故③正確;當時,,故④正確.故選D.【點睛】本題的解題關鍵是熟悉函數(shù)的系數(shù)之間的關系,二次函數(shù)和一元二次方程的關系,難點是第四問的證明,要考慮到不等式的轉(zhuǎn)化.10、A【解析】x2-8x-1=0,移項,得x2-8x=1,配方,得x2-8x+42=1+42,即(x-4)2=17.故選A.點睛:配方法的一般步驟:(1)把常數(shù)項移到等號的右邊;(2)把二次項的系數(shù)化為1;(3)等式兩邊同時加上一次項系數(shù)一半的平方.11、B【解析】A.由矩形ABCD,AF⊥DE可得∠C=∠AFD=90°,AD∥BC,∴∠ADF=∠DEC.又∵DE=AD,∴△AFD≌△DCE(AAS),故A正確;B.∵∠ADF不一定等于30°,∴直角三角形ADF中,AF不一定等于AD的一半,故B錯誤;C.由△AFD≌△DCE,可得AF=CD,由矩形ABCD,可得AB=CD,∴AB=AF,故C正確;D.由△AFD≌△DCE,可得CE=DF,由矩形ABCD,可得BC=AD,又∵BE=BC﹣EC,∴BE=AD﹣DF,故D正確;故選B.12、B【解析】用關于原點的對稱點的坐標特征進行判斷即可.【詳解】點P(-1,2)關于原點的對稱點的坐標為(1,-2),故選:B.【點睛】根據(jù)兩個點關于原點對稱時,它們的坐標符號相反.二、填空題(每題4分,共24分)13、1【分析】連接OB,OC,依據(jù)△BOC是等邊三角形,即可得到BO=CO=BC=BC=4,進而得出⊙O的直徑為1.【詳解】解:如圖,連接OB,OC,∵∠A=30°,∴∠BOC=60°,∴△BOC是等邊三角形,又∵BC=4,∴BO=CO=BC=BC=4,∴⊙O的直徑為1,故答案為:1.【點睛】本題主要考查了三角形的外接圓以及圓周角定理的運用,三角形外接圓的圓心是三角形三條邊垂直平分線的交點,叫做三角形的外心.14、.【分析】經(jīng)過圓心O作圓的內(nèi)接正n邊形的一邊AB的垂線OC,垂足是C.連接OA,則在直角△OAC中,∠O=.OC是邊心距r,OA即半徑R.AB=2AC=a.根據(jù)三角函數(shù)即可求解.【詳解】解:連接中心和頂點,作出邊心距.那么得到直角三角形在中心的度數(shù)為:360°÷3÷2=60°,那么外接圓半徑是4÷2÷sin60°=;故答案為:.【點睛】本題考查了等邊三角形、垂徑定理以及三角函數(shù)的知識,解答的關鍵在于做出輔助線、靈活應用勾股定理.15、【分析】先求出瓷磚的總數(shù),再求出白色瓷磚的個數(shù),利用概率公式即可得出結論.【詳解】由圖可知,共有5塊瓷磚,白色的有3塊,所以它停在白色地磚上的概率=.考點:概率.16、①④【分析】先將函數(shù)解析式化成交點時后,可得對稱軸表達式,及與x軸交點坐標,由此可以判斷增減性.【詳解】解:,對稱軸為,①,故該函數(shù)圖象經(jīng)過,故正確;②,,該函數(shù)圖象頂點不可能在第三象限,故錯誤;③,則當時,y隨著x的增大而增大,故此項錯誤;④當時,即,y隨著x的增大而減小,故此項正確.【點睛】本題考查了二次函數(shù)的性質(zhì),掌握二次函數(shù)的性質(zhì)是解題的關鍵.17、y2=.【分析】根據(jù),過y1上的任意一點A,得出△CAO的面積為2,進而得出△CBO面積為3,即可得出y2的解析式.【詳解】解:∵,過y1上的任意一點A,作x軸的平行線交y2于B,交y軸于C,S△AOB=1,∴△CBO面積為3,∴xy=6,∴y2的解析式是:y2=.故答案為:y2=.18、【分析】根據(jù)正五邊形的概念可證得,利用對應邊成比例列方程即可求得答案.【詳解】如圖,由邊框總長為40cm的五角星,知:,ABCDE為圓內(nèi)接正五邊形,∴,,∴,∴,同理:,∴,∴,設,則,∵,,∴,,即:,化簡得:,配方得:,解得:2(負值已舍),故答案為:2【點睛】本題考查了圓內(nèi)接正五邊形的性質(zhì)、相似三角形的判定和性質(zhì)、一元二次方程的解法,判定是正確解答本題的關鍵.三、解答題(共78分)19、(1)見解析;(2)見解析.【分析】(1)依據(jù)正方形的性質(zhì)以及垂線的定義,即可得到∠ADG=∠C=90°,AD=DC,∠DAG=∠CDE,即可得出△ADG≌△DCE;
(2)延長DE交AB的延長線于H,根據(jù)△DCE≌△HBE,即可得出B是AH的中點,進而得到AB=FB.【詳解】證明:(1)四邊形是正方形,,又,,,(2)如圖所示,延長交的延長線于,是的中點,,又,,,即是的中點,又,中,.【點睛】本題主要考查了正方形的性質(zhì)以及全等三角形的判定與性質(zhì),在應用全等三角形的判定時,要注意三角形間的公共邊和公共角,必要時添加適當輔助線構造三角形.20、(1)直線BC與⊙O相切,理由詳見解析;(2).【分析】(1)連接OD,由角平分線的定義可得∠DAC=∠DAB,根據(jù)等腰三角形的性質(zhì)可得∠OAD=∠ODA,即可證明OD//AC,根據(jù)平行線的性質(zhì)可得,可得直線BC與⊙O相切;(2)利用弧長公式可求出∠DOE=60°,根據(jù)∠DOE的正切可求出BD的長,利用三角形和扇形的面積公式即可得答案.【詳解】(1)直線與⊙O相切,理由如下:連接,∵是的平分線,∴,∵,∴,∴,∴,∴,∴,∴直線與⊙O相切.(2)∵,劣弧的長為,∴,∴∵,∴,∴.∴BE與劣弧DE所圍成的陰影部分的面積為.【點睛】本題考查切線的判定、弧長公式及扇形面積,經(jīng)過半徑的外端點并且垂直于這條半徑的直線的圓的切線;n°的圓心角所對的弧長為l=(r為半徑);圓心角為n°的扇形的面積為S扇形=(r為半徑);熟練掌握弧長公式及扇形面積公式是解題關鍵.21、1﹣x,原式=.【分析】先利用分式的加減乘除運算對分式進行化簡,然后把x的值代入即可.【詳解】原式=當x=1﹣時,∴原式=1﹣(1﹣)=;【點睛】本題主要考查分式的化簡求值,掌握分式混合運算的順序和法則是解題的關鍵.22、(1)k<(1)1【分析】(1)根據(jù)方程有兩個不相等的實數(shù)根,得到根的判別式的值大于0列出關于k的不等式,求出不等式的解集即可得到k的范圍.(1)找出k范圍中的整數(shù)解確定出k的值,經(jīng)檢驗即可得到滿足題意k的值.【詳解】解:(1)∵關于的一元二次方程有兩個不相等的實數(shù)根,∴.解得:k<.(1)∵k為k<的正整數(shù),∴k=1或1.當k=1時,方程為,兩根為,非整數(shù),不合題意;當k=1時,方程為,兩根為或,都是整數(shù),符合題意.∴k的值為1.23、(1)剪成40cm和80cm的兩段;(2)小剛的說法正確,理由見解析.【分析】(1)設剪成一段長為xcm,則另一段長為(120-x)cm.就可以表示出這兩個正方形的面積,根據(jù)兩個正方形的面積之和等于500cm2建立方程求出其解即可;(2),如果方程有解就說明小剛的說法錯誤,否則正確.【詳解】(1)設剪成一段長為xcm,則另一段長為(120-x)cm,依題意得,解得,,∴把一根120cm長的鐵絲剪成40cm和80cm的兩段,圍成的正方形面積之和為500cm2;(2)小剛的說法正確,因為整理得,,∵△=-1600<0,∴兩個正方形的面積之和不可能等于400cm2,∴小剛的說法正確.【點睛】本題考查了列一元二次方程解實際問題的運用,一元二次方程的解法的運用,根的判別式的運用,解答本題時找到等量關系建立方程和運用根的判別式是關鍵.24、(1)x1=2,x2;(2)x1=1或x2=2.【分析】(1)先分解因式,即可得出兩個一元一次方程,求出方程的解即可;(2)提取公因式x后,求出方程的解即可;【詳解】解:(1)2x2﹣7x+
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年版特許經(jīng)營權授予協(xié)議
- 買賣協(xié)議書匯編六篇
- 2024年度砸墻工程設計與施工監(jiān)理合同3篇
- 2024年生產(chǎn)協(xié)作合同3篇
- 2024年版食堂廚房管理服務合同3篇
- 活動計劃模板集錦五篇
- 大學生學習計劃15篇
- 收購合同匯編10篇
- 對甲氧基苯甲醛項目商業(yè)計劃書
- 學校后勤干事崗位職責總結
- 人教版(2024)八年級上冊物理期末測試卷(含答案)
- 燈具行業(yè)采購工作總結
- 大學寫作智慧樹知到期末考試答案章節(jié)答案2024年麗水學院
- NB-T31022-2012風力發(fā)電工程達標投產(chǎn)驗收規(guī)程
- 蘇教版六年級上冊科學期末測試卷帶答案
- 中式婚宴主題宴會設計方案策劃(2篇)
- 媒介與性別文化傳播智慧樹知到期末考試答案章節(jié)答案2024年浙江工業(yè)大學
- 我會舉手來發(fā)言(教案)2023-2024學年心理健康一年級
- 形勢與政策中國式現(xiàn)代化論文1500字
- 應急預案監(jiān)理實施細則
- 基于英語學習活動觀的高中英語課堂教學實踐
評論
0/150
提交評論