版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022年湖南省婁底市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.
A.6xarctanx2
B.6xtanx2+5
C.5
D.6xcos2x
2.當(dāng)x→0時(shí),3x是x的().
A.高階無窮小量B.等價(jià)無窮小量C.同階無窮小量,但不是等價(jià)無窮小量D.低階無窮小量
3.
4.設(shè)f(x)在Xo處不連續(xù),則
A.f(x0)必存在
B.f(x0)必不存在
C.
D.
5.
6.()A.A.發(fā)散B.條件收斂C.絕對(duì)收斂D.斂散性不能確定
7.函數(shù)f(x)=2x3-9x2+12x-3單調(diào)減少的區(qū)間為A.(-∞,1]B.[1,2]C.[2,+∞)D.[1,+∞)
8.交換二次積分次序等于().A.A.
B.
C.
D.
9.A.A.凹B.凸C.凹凸性不可確定D.單調(diào)減少
10.
11.
12.設(shè)f(x)在點(diǎn)x0處連續(xù),則下面命題正確的是()A.A.
B.
C.
D.
13.
14.
15.A.A.>0B.<0C.=0D.不存在16.設(shè)曲線y=x-ex在點(diǎn)(0,-1)處與直線l相切,則直線l的斜率為().A.A.∞B.1C.0D.-1
17.
18.A.dx+dyB.1/3·(dx+dy)C.2/3·(dx+dy)D.2(dx+dy)
19.當(dāng)x→0時(shí),x2是x-ln(1+x)的().
A.較高階的無窮小B.等價(jià)無窮小C.同階但不等價(jià)無窮小D.較低階的無窮小20.設(shè)∫0xf(t)dt=xsinx,則f(x)=()A.sinx+xcosxB.sinx-xcosxC.xcosx-sinxD.-(sinx+xcosx)二、填空題(20題)21.
22.23.
24.
25.設(shè)f(x)=e5x,則f(x)的n階導(dǎo)數(shù)f(n)(x)=__________.
26.
27.設(shè),將此積分化為極坐標(biāo)系下的積分,此時(shí)I=______.
28.29.設(shè)區(qū)域D為y=x2,x=y2圍成的在第一象限內(nèi)的區(qū)域,則=______.30.31.
32.33.
34.設(shè)sinx為f(x)的原函數(shù),則f(x)=________。
35.
36.
37.38.
39.
40.
三、計(jì)算題(20題)41.求微分方程y"-4y'+4y=e-2x的通解.
42.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.43.證明:44.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).45.求微分方程的通解.46.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.47.48.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.49.
50.51.求曲線在點(diǎn)(1,3)處的切線方程.52.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則
53.
54.
55.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
56.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
57.58.將f(x)=e-2X展開為x的冪級(jí)數(shù).59.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
60.
四、解答題(10題)61.設(shè)y=xcosx,求y'.62.63.
64.
65.
66.
67.
68.
69.求∫sin(x+2)dx。
70.
五、高等數(shù)學(xué)(0題)71.∫f(x)dx=F(x)+則∫c-xf(e-x)dx=__________。
六、解答題(0題)72.
參考答案
1.C
2.C本題考查的知識(shí)點(diǎn)為無窮小量階的比較.
應(yīng)依定義考察
由此可知,當(dāng)x→0時(shí),3x是x的同階無窮小量,但不是等價(jià)無窮小量,故知應(yīng)選C.
本題應(yīng)明確的是:考察當(dāng)x→x0時(shí)無窮小量β與無窮小量α的階的關(guān)系時(shí),要判定極限
這里是以α為“基本量”,考生要特別注意此點(diǎn),才能避免錯(cuò)誤.
3.D解析:
4.B
5.C
6.C
7.Bf(x)=2x3-9x2+12x-3的定義域?yàn)?-∞,+∞)
f'(x)=6x2-18x+12=6(x23x+2)=6(x-1)(x-2)。
令f'(x)=0得駐點(diǎn)x1=1,x2=2。
當(dāng)x<1時(shí),f'(x)>0,f(x)單調(diào)增加。
當(dāng)1<x<2時(shí),f'(x)<0,f(x)單調(diào)減少。
當(dāng)x>2時(shí),f'(x)>0,f(x)單調(diào)增加。因此知應(yīng)選B。
8.B本題考查的知識(shí)點(diǎn)為交換二次積分次序.
由所給二次積分可知積分區(qū)域D可以表示為
1≤y≤2,y≤x≤2,
交換積分次序后,D可以表示為
1≤x≤2,1≤y≤x,
故應(yīng)選B.
9.A本題考查的知識(shí)點(diǎn)為利用二階導(dǎo)數(shù)符號(hào)判定曲線的凹凸性.
10.B
11.C解析:
12.C本題考查的知識(shí)點(diǎn)有兩個(gè):連續(xù)性與極限的關(guān)系;連續(xù)性與可導(dǎo)的關(guān)系.
連續(xù)性的定義包含三個(gè)要素:若f(x)在點(diǎn)x0處連續(xù),則
(1)f(x)在點(diǎn)x0處必定有定義;
(2)必定存在;
(3)
由此可知所給命題C正確,A,B不正確.
注意連續(xù)性與可導(dǎo)的關(guān)系:可導(dǎo)必定連續(xù);連續(xù)不一定可導(dǎo),可知命題D不正確.故知,應(yīng)選C.
本題常見的錯(cuò)誤是選D.這是由于考生沒有正確理解可導(dǎo)與連續(xù)的關(guān)系.
若f(x)在點(diǎn)x0處可導(dǎo),則f(x)在點(diǎn)x0處必定連續(xù).
但是其逆命題不成立.
13.C
14.A
15.C被積函數(shù)sin5x為奇函數(shù),積分區(qū)間[-1,1]為對(duì)稱區(qū)間。由定積分的對(duì)稱性質(zhì)知選C。
16.C本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的幾何意義.
由于y=x-ex,y'=1-ex,y'|x=0=0.由導(dǎo)數(shù)的幾何意義可知,曲線y=x-ex在點(diǎn)(0,-1)處切線斜率為0,因此選C.
17.A解析:
18.C本題考查了二元函數(shù)的全微分的知識(shí)點(diǎn),
19.C解析:本題考查的知識(shí)點(diǎn)為無窮小階的比較.
由于
可知當(dāng)x→0時(shí),x2與x-ln(1+x)為同階但不等價(jià)無窮?。蕬?yīng)選C.
20.A
21.022.本題考查的知識(shí)點(diǎn)為不定積分的換元積分法。
23.
24.-ln(3-x)+C-ln(3-x)+C解析:
25.
26.0本題考查了利用極坐標(biāo)求二重積分的知識(shí)點(diǎn).
27.
28.e-2本題考查了函數(shù)的極限的知識(shí)點(diǎn),29.1/3;本題考查的知識(shí)點(diǎn)為二重積分的計(jì)算.
30.
31.-1本題考查了利用導(dǎo)數(shù)定義求極限的知識(shí)點(diǎn)。
32.
33.1/z本題考查了二元函數(shù)的二階偏導(dǎo)數(shù)的知識(shí)點(diǎn)。
34.0因?yàn)閟inx為f(x)的一個(gè)原函數(shù),所以f(x)=(sinx)"=cosx,f"(x)=-sinx。
35.-sinx
36.37.本題考查的知識(shí)點(diǎn)為:求解可分離變量的微分方程.38.本題考查的知識(shí)點(diǎn)為用洛必達(dá)法則求未定型極限.
39.
40.
41.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
42.函數(shù)的定義域?yàn)?/p>
注意
43.
44.
列表:
說明
45.
46.
47.
48.
49.由一階線性微分方程通解公式有
50.
51.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
52.由等價(jià)無窮小量的定義可知
53.
54.
則
55.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2023雙方汽車租賃協(xié)議書七篇
- 色素性癢疹病因介紹
- 臂叢神經(jīng)損傷病因介紹
- 個(gè)體防護(hù)用品基礎(chǔ)知識(shí)
- 《模具設(shè)計(jì)與制造李集仁》課件-第6章
- (2024)清潔汽油項(xiàng)目可行性研究報(bào)告寫作范本(一)
- 2024-2025年遼寧省錦州市第十二中學(xué)第三次月考英語問卷-A4
- 天津市五區(qū)縣重點(diǎn)校聯(lián)考2022-2023學(xué)年高二下學(xué)期期中考試語文試卷
- 電氣施工對(duì)土建工程的 要求與配合- 電氣施工技術(shù)98課件講解
- 2023年監(jiān)護(hù)病房項(xiàng)目籌資方案
- 2024-2025學(xué)年人教版生物學(xué)八年級(jí)上冊(cè)期末復(fù)習(xí)練習(xí)題(含答案)
- 2025年上半年廈門市外事翻譯護(hù)照簽證中心招考易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- 名師工作室建設(shè)與管理方案
- 2025年?duì)I銷部全年工作計(jì)劃
- 新《安全生產(chǎn)法》安全培訓(xùn)
- 2024年度技術(shù)服務(wù)合同:人工智能系統(tǒng)的定制與技術(shù)支持3篇
- 山東省濟(jì)南市2023-2024學(xué)年高一上學(xué)期1月期末考試 物理 含答案
- 2024二十屆三中全會(huì)知識(shí)競賽題庫及答案
- 成人重癥患者人工氣道濕化護(hù)理專家共識(shí) 解讀
- 機(jī)器學(xué)習(xí)(山東聯(lián)盟)智慧樹知到期末考試答案章節(jié)答案2024年山東財(cái)經(jīng)大學(xué)
- 科研設(shè)計(jì)及研究生論文撰寫智慧樹知到期末考試答案章節(jié)答案2024年浙江中醫(yī)藥大學(xué)
評(píng)論
0/150
提交評(píng)論