版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
對數(shù)極大似然估計第一頁,共八十三頁,2022年,8月28日1EViews包含了一些常用方法,如最小二乘法、非線性最小二乘法、加權(quán)最小二乘法、TSLS、GMM、ARIMA、ARCH、GARCH等方法,這些方法可以解決可能遇到的大多數(shù)估計問題。但是,我們在研究中也可能會碰到一些不在上述之列的特殊的模型,這些模型可能是現(xiàn)存方法的一個擴(kuò)展,也可能是一類全新的問題。為了能解決這些特殊的問題,EViews提供了對數(shù)極大似然估計對象這一工具來估計各種不同類型的模型。對數(shù)極大似然估計對象提供了一個一般的,開放的工具,可以通過這個工具極大化相關(guān)參數(shù)的似然函數(shù)對一大類模型進(jìn)行估計。
第二頁,共八十三頁,2022年,8月28日2
使用對數(shù)極大似然估計對象估計時,我們用EViews的序列生成器,將樣本中各個觀測值的對數(shù)似然貢獻(xiàn)描述為一個未知參數(shù)的函數(shù)。可以給出似然函數(shù)中一個或多個參數(shù)的解析微分,也可以讓EViews自動計算數(shù)值微分。EViews將尋找使得指定的似然函數(shù)最大化的參數(shù)值,并給出這些參數(shù)估計的估計標(biāo)準(zhǔn)差。在本章,我們將詳細(xì)論述對數(shù)極大似然估計對象,說明其一般特征。并給出了一些可以使用該方法的具體的例子。
第三頁,共八十三頁,2022年,8月28日3§8.1對數(shù)極大似然估計的基本原理§8.1.1極大似然估計的基本原理設(shè)總體的概率密度函數(shù)為P,其類型是已知的,但含有未知參數(shù)(向量)。我們的目的就是依據(jù)從該總體抽得的隨機(jī)樣本y1,y2,…,yT,尋求對
的估計。觀測值y1,y2,…,yT的聯(lián)合密度函數(shù)被給定為(8.1.1)其中:y=(y1,y2,…,yT)。將這一聯(lián)合密度函數(shù)視為參數(shù)
的函數(shù),稱為樣本的似然函數(shù)(likelihoodfunction)。第四頁,共八十三頁,2022年,8月28日4極大似然原理就是尋求參數(shù)的估計值,使得所給樣本值的概率密度(即似然函數(shù))的值在這個參數(shù)值之下,達(dá)到最大。在當(dāng)前的情形下,就是尋求
的估計值,使得似然函數(shù)L(y
;
)
相對于給定的觀測值y1,y2,…,yT而言達(dá)到最大值,就被稱為極大似然估計量。
第五頁,共八十三頁,2022年,8月28日5在L(y
;
)關(guān)于i(i=1,2,…,n,n是未知參數(shù)的個數(shù))的偏導(dǎo)數(shù)存在時,要使L(y
;
)
取最大值,
必須滿足,i=1,2,…,n(8.1.2)由上式可解得n1
向量
的極大似然估計值,而式(8.1.2)也被稱為似然函數(shù)。第六頁,共八十三頁,2022年,8月28日6因為L(y
;
)
與ln[L(y
;
))]
在同一點處取極值,所以也可以由,i=1,2,…,n(8.1.3)求得,因為對數(shù)可將乘積變成求和,所以,式(8.1.3)往往比直接使用式(8.1.2)來得方便。式(8.1.3)也被稱為對數(shù)似然函數(shù)。第七頁,共八十三頁,2022年,8月28日7考慮多元線性回歸模型的一般形式,t=1,2,…,T
(8.1.4)其中k是解釋變量個數(shù),T是觀測值個數(shù),隨機(jī)擾動項
~,那么
yt服從如下的正態(tài)分布:~其中(8.1.5)第八頁,共八十三頁,2022年,8月28日8
y
的隨機(jī)抽取的T
個樣本觀測值的聯(lián)合概率函數(shù)為
(8.1.6)這就是變量y的似然函數(shù),未知參數(shù)向量={1,2,…k,2}。對似然函數(shù)求極大值和對數(shù)似然函數(shù)求極大值是等價的,式(8.1.6)的對數(shù)似然函數(shù)形式為:
(8.1.7)第九頁,共八十三頁,2022年,8月28日9注意,可以將對數(shù)似然函數(shù)寫成t時刻所有觀測值的對數(shù)似然貢獻(xiàn)和的形式,(8.1.8)這里對數(shù)似然的單個貢獻(xiàn)(用小寫字母表示)由下面的式子給出:(8.1.9)第十頁,共八十三頁,2022年,8月28日10式(8.1.7)也可用標(biāo)準(zhǔn)正態(tài)分布的密度函數(shù)
表示
(8.1.10)式中標(biāo)準(zhǔn)正態(tài)分布的對數(shù)似然函數(shù)
為(8.1.11)這里對數(shù)似然函數(shù)每個觀測值的貢獻(xiàn)式(8.1.9)又可以由下面的式子給出:(8.1.12)第十一頁,共八十三頁,2022年,8月28日11
§8.1.2EViews極大似然對象概述
用對數(shù)極大似然估計來估計一個模型,主要的工作是建立用來求解似然函數(shù)的說明文本。用EViews指定對數(shù)極大似然函數(shù)的說明是很容易的,因為似然函數(shù)的說明只是一系列對序列的賦值語句,這些賦值語句在極大化的過程中被反復(fù)的計算。我們所要做的只是寫下一組語句,在計算時,這些語句將描述一個包含每個觀測值對似然函數(shù)貢獻(xiàn)的序列。第十二頁,共八十三頁,2022年,8月28日12
注意到,我們能將對數(shù)似然函數(shù)寫成所有觀測值
t的對數(shù)似然貢獻(xiàn)和的形式,
這里單個貢獻(xiàn)由下面的式子給出:
第十三頁,共八十三頁,2022年,8月28日13以只含一個解釋變量的一元線性回歸方程為例,t=1,2,…,T假定知道模型參數(shù)的真實值,并且想用EViews產(chǎn)生一個包含每個觀測值的貢獻(xiàn)的序列。
第十四頁,共八十三頁,2022年,8月28日14未知參數(shù)向量={0,
1,2},可以將參數(shù)初值賦給系數(shù)向量的c(1)到c(3)元素,然后把下面的賦值語句作為EViews的命令或程序來執(zhí)行。Seriesres=y-c(1)-c(2)*xSeriesvar=c(3)SerieslogL1=-log(2*3.14159*var)/2-(res^2/var)/2前面兩行語句描述了用來存儲計算時的中間結(jié)果的序列。第一個語句創(chuàng)建了殘差序列:res,而第二個語句創(chuàng)建了方差序列:var。而序列l(wèi)ogL1包含了每個觀測值的對數(shù)似然貢獻(xiàn)的集合。第十五頁,共八十三頁,2022年,8月28日15
下面考慮2個變量的例子:
這里,y,x,w是觀測序列,而={1,2,3,
2}是模型的參數(shù)。有T個觀測值的樣本的對數(shù)似然函數(shù)可以寫成:
這里,是標(biāo)準(zhǔn)正態(tài)分布的密度函數(shù)。第十六頁,共八十三頁,2022年,8月28日16
將這一例子的對數(shù)極大似然函數(shù)過程寫成下面的賦值語句:Seriesres=y-c(1)-c(2)*x-c(3)*wSeriesvar=c(4)SerieslogL1=log(@dnorm(res/@sqrt(var)))-log(var)/2前面兩行語句創(chuàng)建了殘差序列res和方差序列var,參數(shù)c(1),c(2),c(3)代表了回歸系數(shù)1,2,3,c(4)代表了
2,序列l(wèi)ogL1包含了每個觀測值的對數(shù)似然貢獻(xiàn)的集合。
第十七頁,共八十三頁,2022年,8月28日17
下面考慮稍復(fù)雜的例子,假設(shè)數(shù)據(jù)是由條件異方差回歸模型生成的:
這里,x,y,w是觀測序列,而={1,2,3,
2,}是模型的參數(shù)。有T個觀測值的樣本的對數(shù)似然函數(shù)可以寫成:
這里,
是標(biāo)準(zhǔn)正態(tài)分布的密度函數(shù)。第十八頁,共八十三頁,2022年,8月28日18
將這一例子的對數(shù)極大似然函數(shù)過程寫成下面的賦值語句:Seriesres=y-c(1)-c(2)*x-c(3)*wSeriesvar=c(4)*w^c(5)SerieslogL1=log(@dnorm(res/@sqrt(var)))-log(var)/2前面兩行語句創(chuàng)建了殘差序列res和方差序列var,參數(shù)c(1),c(2),c(3)代表回歸系數(shù)1,2,3,c(4)代表
2,c(5)代表
,序列l(wèi)ogL1包含了每個觀測值的對數(shù)似然貢獻(xiàn)的集合。
第十九頁,共八十三頁,2022年,8月28日19
現(xiàn)在假定不知道模型參數(shù)的真實值,而想使用數(shù)據(jù)來估計它。參數(shù)的極大似然估計被定義為:使得樣本中所有隨機(jī)抽取的一組觀測值的聯(lián)合概率密度,即似然函數(shù)取最大值的那組參數(shù)值。而對數(shù)極大似然方法使得尋找這些極大似然估計變得容易了。只需創(chuàng)建一個對數(shù)似然對象,把上面的賦值語句輸入到logL的說明窗口,然后讓EViews來估計這個模型。
第二十頁,共八十三頁,2022年,8月28日20
在輸入賦值語句時,只需對上面的文本做兩處微小的改動就可以了。首先,把每行開頭的關(guān)鍵字series刪掉(因為似然說明暗含了假定序列是當(dāng)前的)。第二,必須在說明中加入額外的一行(關(guān)鍵字@logL為包含似然貢獻(xiàn)的序列命名)。這樣,要在logL說明窗口輸入下面的內(nèi)容:@logLloglres=y-c(1)-c(2)*x-c(3)*wvar=c(4)*w^c(5)logl=log(@dnorm(res/@sqrt(var)))-log(var)/2對數(shù)似然函數(shù)的第一行,@logLlogl,告訴EViews用logl序列來存儲似然貢獻(xiàn)。余下的行定義了中間結(jié)果的計算和實際的似然貢獻(xiàn)的計算。第二十一頁,共八十三頁,2022年,8月28日21當(dāng)用EViews估計模型參數(shù)時,它將對不同參數(shù)值重復(fù)執(zhí)行說明中的賦值語句,使用迭代法來求使得對數(shù)似然貢獻(xiàn)最大的一組參數(shù)值。當(dāng)EViews再不能提高全部似然貢獻(xiàn)時,它將停止迭代并在估計輸出中報告最終參數(shù)值和估計標(biāo)準(zhǔn)差。本章下面的部分將更詳細(xì)地討論使用似然方法說明,估計和檢驗時要遵循的規(guī)則。第二十二頁,共八十三頁,2022年,8月28日22
要創(chuàng)建一個似然對象,選擇Objects/NewObject.../LogL或者在命令窗口輸入“l(fā)ogL”。似然窗口將打開一個空白說明視圖。說明視圖是一個文本窗口,在這個窗口里可以輸入描述統(tǒng)計模型的說明語句,還可以設(shè)置控制估計程序各個方面的選項。
§8.1.3似然說明第二十三頁,共八十三頁,2022年,8月28日231.似然的定義
正如上節(jié)中所描述的那樣,似然說明的主線是一系列賦值語句,在計算時,這些賦值語句將產(chǎn)生一個包含樣本中每個觀測值的對數(shù)似然貢獻(xiàn)的序列。賦值語句的多少可以自己決定。第二十四頁,共八十三頁,2022年,8月28日24
每個似然說明都必須包含一個控制語句,該語句命名了保存似然貢獻(xiàn)的序列。語句的格式為:
@logLseries_name這里@logL是關(guān)鍵字,series_name是保存似然貢獻(xiàn)的序列的名字,可以寫在似然說明的任何位置。例如,對于一元線性回歸方程的似然說明來說,第一行:@logLlogl是似然貢獻(xiàn)的序列的說明。當(dāng)對模型進(jìn)行計算時,EViews將在現(xiàn)有參數(shù)值下執(zhí)行每個賦值語句,并將結(jié)果保存到指定名稱的序列里。如果序列不存在,系統(tǒng)將自動創(chuàng)建,如果已經(jīng)存在,系統(tǒng)將使用現(xiàn)有的序列,并覆蓋序列原來的內(nèi)容。第二十五頁,共八十三頁,2022年,8月28日25如果想在估計完成后刪除說明中的一個或多個序列,可以使用@temp語句:
@tempseries_name1sereis_name2...這個語句告訴EViews在對說明的計算完成后,刪除列表中的序列。如果在logL中創(chuàng)建了許多中間結(jié)果,又不愿意工作文件因包含這些結(jié)果的序列而弄得混亂的話,刪除這些序列將是很有用的。例如,圖8.2中的最后一行語句就是命令EViews在估計結(jié)束后,刪除估計產(chǎn)生的中間序列res、var和logl。這里需要強(qiáng)調(diào)一點,在似然說明的文本中可以加入說明語句,說明語句的前面加上撇號“”,則這個語句將不被執(zhí)行。第二十六頁,共八十三頁,2022年,8月28日26
2.參數(shù)名
在上面的例子中,我們使用了系數(shù)c(1)到c(5)作為未知參數(shù)的名稱。更一般的,出現(xiàn)在說明中一個已命名的系數(shù)向量中的每一個元素都將被視為待估參數(shù)。例如創(chuàng)建2個命名的系數(shù)向量:beta(2)sigma(1)
于是可以寫出下面的似然說明:
@logLlogL1
res=cs-beta(1)-beta(2)*incvar=sigma(1)logl1=log(@dnorm(res/@sqrt(var)))-log(var)/2第二十七頁,共八十三頁,2022年,8月28日27
由于說明中的已命名的系數(shù)向量的所有元素都將被視為待估參數(shù),必須確定所有的系數(shù)確實影響了一個或多個似然貢獻(xiàn)的值。如果一個參數(shù)對似然沒有影響,那么在試圖進(jìn)行參數(shù)估計時,將遇到一個奇異錯誤。應(yīng)該注意到除了系數(shù)元素外所有的對象在估計過程中都將被視為固定的,不可改變的。例如,假定omega是工作文件中一個已命名的標(biāo)量(scalaromega),如果將子表達(dá)式var定義如下:
var=omega
EViews將不會估計omega。omega的值將被固定在估計的開始值上。
第二十八頁,共八十三頁,2022年,8月28日283.估計的順序
logL說明包含了一個或多個能夠產(chǎn)生包含似然貢獻(xiàn)的序列的賦值語句。在執(zhí)行這些賦值語句的時候,EViews總是從頂部到底部執(zhí)行,所以后面計算要用到的表達(dá)式應(yīng)放在前面。EViews對整個樣本重復(fù)地計算每個表達(dá)式。EViews對模型進(jìn)行重復(fù)計算時采用方程順序和樣本觀測值順序兩種不同方式,這樣就必須指定采用那種方式,即觀測值和方程的執(zhí)行順序。
第二十九頁,共八十三頁,2022年,8月28日29(1)觀測值順序(@byobs)默認(rèn)情形下,EViews用觀測值順序來計算模型,此種方式是先用第一個觀測值來計算所有的賦值語句,接下來是用第二個觀測值來計算所有的賦值語句,如此往復(fù),直到估計樣本中所有觀測值都使用過。這是用觀測值順序來計算遞歸模型的正確順序,遞歸模型中每一個觀測值的似然貢獻(xiàn)依賴于前面的觀測值,例如AR模型或ARCH模型。第三十頁,共八十三頁,2022年,8月28日30(2)方程順序(@byeqn)
可以改變計算的順序,這樣EViews就可以用方程順序來計算模型,先用所有的觀測值來計算第一個賦值語句,然后用所有的觀測值計算第二個賦值語句,如此往復(fù),對說明中每一個賦值語句都用同樣方式進(jìn)行計算。這是用中間序列的總量統(tǒng)計作為后面計算的輸入的模型的正確順序??梢酝ㄟ^在說明中加入一條語句來聲明所選擇的計算方法。要用方程順序來計算,僅加一行關(guān)鍵字“@byeqn”。要用樣本順序來計算,可以用關(guān)鍵字“@byobs”。如果沒有給出關(guān)鍵字,那么系統(tǒng)默認(rèn)為“@byobs”。第三十一頁,共八十三頁,2022年,8月28日31例8.1一元線性回歸方程的極大似然估計
以例3.1的消費(fèi)函數(shù)作為例子,分析普通回歸方程的極大似然估計方法。消費(fèi)函數(shù)的被解釋變量cs為實際居民消費(fèi),解釋變量為實際可支配收入inc,變量均為剔除了價格因素的實際年度數(shù)據(jù),樣本區(qū)間為1978~2006年。那么凱恩斯消費(fèi)函數(shù)的方程形式就可以寫成:
(8.2.5)
其中:ut服從標(biāo)準(zhǔn)正態(tài)分布,cs=CS/CPI,inc=YD/CPI,CPI代表1978年為1的居民消費(fèi)價格指數(shù),
代表自發(fā)消費(fèi),
代表邊際消費(fèi)傾向,則參數(shù)向量為=(,,u2)',觀測值個數(shù)T=29。
第三十二頁,共八十三頁,2022年,8月28日32利用前面的式(8.2.2),我們可以寫出這個方程的對數(shù)極大似然函數(shù)
(8.2.6)
(8.2.6)式中zt=(cst-
-×inct)/
u。第三十三頁,共八十三頁,2022年,8月28日33利用極大似然方法求解,作為@byobs語句的一個例子,考慮下面的說明:EViews用觀測值順序來計算模型,此種方式是先用第一個觀測值來計算所有的賦值語句,接下來是用第二個觀測值來計算所有的賦值語句,如此往復(fù),直到估計樣本中所有觀測值都使用過。本例將方差作為未知參數(shù)c(3),一起求解。
第三十四頁,共八十三頁,2022年,8月28日34進(jìn)行極大似然求解之后,得到
和
的估計值:c(3)是方差的估計結(jié)果。這個結(jié)果與最小二乘法得到的結(jié)果完全相同。
第三十五頁,共八十三頁,2022年,8月28日35作為@byeqn語句的一個例子,考慮下面的說明:進(jìn)行極大似然求解之后,得到
和
的估計值:
第三十六頁,共八十三頁,2022年,8月28日36例8.4具有異方差的一元線性回歸模型的極大似然估計
根據(jù)第4章例4.1,各省人均家庭交通及通訊支出(cum)和可支配收入(in)的關(guān)系,樣本個數(shù)為30,考慮如下具有異方差性的方程:(8.2.40)為消除方程中的異方差,利用加權(quán)最小二乘法求解,設(shè)êt=cumt–
0–1int,w=1/|ê|,可以寫出式(8.2.40)的對數(shù)極大似然函數(shù)
(8.2.41)它的未知參數(shù)向量為=(0,1)。
第三十七頁,共八十三頁,2022年,8月28日37也可用同樣的處理方法利用極大似然方法求解,作為@byeqn語句的一個例子,考慮下面的說明:
這個說明通過利用殘差res建立加權(quán)向量w=1/abs(res)來完成一個加權(quán)最小二乘回歸。res的賦值語句計算了在每次計算時的殘差,而這被用做構(gòu)造權(quán)重序列。@byeqn語句指示EViews在一個給定的迭代過程中,必須先算出所有的殘差res,然后再計算殘差的加權(quán)向量w。本例方差用樣本方差替代,也可將方差作為未知參數(shù)c(3),一起求解。
第三十八頁,共八十三頁,2022年,8月28日38利用極大似然方法估計出未知參數(shù)
后,寫出方程為:(-392.6)(225.5)第三十九頁,共八十三頁,2022年,8月28日39
§8.1.4極大似然估計量的計算方法
極大似然估計量的計算方法有許多種,有解析方法,也有數(shù)值解法。設(shè)=(1,2,…,n)是待求的未知參數(shù)向量,如例8.1中=(,,2),異方差例子中=(,2,)。首先求極大似然估計的迭代公式。為求極大似然估計,需要求解(8.1.13)設(shè)是超參數(shù)向量的精確值,采用Taylor展開式,取一次近似,并設(shè)表示參數(shù)空間上的任意一點,則可將lnL(y;)/表示成(8.1.14)第四十頁,共八十三頁,2022年,8月28日40令其為0,可得(8.1.15)于是得到迭代公式(8.1.16)第四十一頁,共八十三頁,2022年,8月28日41求(l)
(l=1,2,…),它的收斂值(8.1.17)為所求的極大似然估計。式(8.1.16)中對數(shù)似然函數(shù)的二階導(dǎo)數(shù)矩陣
2lnL/
被稱為海塞(Hessian)矩陣,而對數(shù)似然函數(shù)的一階導(dǎo)數(shù)lnL/
被稱為得分向量或Jacobian向量。計算式(8.1.16)中的海塞(Hessian)矩陣的逆矩陣,計算量是很大的。計算式(8.1.16)的方法有多種,近似的方法可節(jié)省時間但缺少嚴(yán)密性,而嚴(yán)密的方法又有計算時間長的缺點。實際應(yīng)用中要根據(jù)所用計算機(jī)的功能選擇適當(dāng)?shù)姆椒?。第四十二頁,共八十三頁?022年,8月28日42
1.
解析導(dǎo)數(shù)
默認(rèn)情形下,當(dāng)極大化似然函數(shù)和形成標(biāo)準(zhǔn)差的估計時,EViews計算似然函數(shù)關(guān)于參數(shù)的數(shù)值微分。也可以用@deriv語句為一個或多個導(dǎo)數(shù)指定解析表達(dá)式,該語句格式為:
@derivpname1sname1pname2sname2...這里pname是模型中的一個參數(shù)名稱,而sname是由模型產(chǎn)生的對應(yīng)的導(dǎo)數(shù)序列的名稱。例如@derivc(1)grad1c(2)grad2c(3)grad3grad1=xa/dgrad2=grad1*x1grad3=grad2*x2第四十三頁,共八十三頁,2022年,8月28日43
2.
導(dǎo)數(shù)步長
如果模型的參數(shù)沒有指定解析微分,EViews將用數(shù)值方法來計算似然函數(shù)關(guān)于這些參數(shù)的導(dǎo)數(shù)。在計算導(dǎo)數(shù)時的步長由兩個參數(shù)控制:r
(相對步長)和
m(最小步長)。用(i)表示參數(shù)在第
i
次迭代時的值,那么在第
i+1次迭代時的步長由下式定義:
雙側(cè)數(shù)值微分被定義為:
第四十四頁,共八十三頁,2022年,8月28日44而單側(cè)數(shù)值微分則由下式計算:(8.19)這里logL是似然函數(shù)。雙側(cè)導(dǎo)數(shù)更加精確,但它要對似然函數(shù)進(jìn)行的計算量大概是單側(cè)導(dǎo)數(shù)的兩倍,運(yùn)行時間上也是如此。
第四十五頁,共八十三頁,2022年,8月28日45
@derivstep可以用來控制步長和在每次迭代時計算導(dǎo)數(shù)的方法。關(guān)鍵字@derivstep后面必須設(shè)置三項:參數(shù)名(或用關(guān)鍵字@all代替);相對步長;最小步長。默認(rèn)設(shè)置(近似的)為:
@derivstep(1)@all1.49e-81e-10這里括弧里的“1”表示用的是單側(cè)導(dǎo)數(shù),而@all關(guān)鍵字表示設(shè)置的步長適用于所有參數(shù)。@all后面第一個數(shù)值是相對步長,第二個數(shù)值是最小步長。默認(rèn)的相對步長為r=1.4910-8,而最小步長為m=10-10。
第四十六頁,共八十三頁,2022年,8月28日46§8.1.5估計
一旦定義了一個似然對象,可以用EViews來尋找使得似然函數(shù)取極大值的參數(shù)值。只需在似然窗口工具欄中單擊Estimate就可以打開估計對話框。在這個對話框里有許多用來控制估計過程不同方面的選項。大多數(shù)問題使用默認(rèn)設(shè)置就可以。單擊OK,EViews將用當(dāng)前的設(shè)置開始估計。
第四十七頁,共八十三頁,2022年,8月28日47
1.初值
由于EViews使用迭代法來求極大似然估計,初值的選擇就顯得非常重要了。對于似然函數(shù)只有一個極大值的問題,只是經(jīng)過多少次迭代使估計收斂的問題。對于那些多個極大值的似然函數(shù)所面臨的問題是決定選擇極大值中哪一個。在某些情況下,如果不給出合理的初值,EViews將無法作出估計。默認(rèn)情況下,EViews使用存儲在系數(shù)向量的值。如果在說明中用了@param語句,那么就用語句指定的值來代替。
第四十八頁,共八十三頁,2022年,8月28日48
在前述的例子中,為均值方程系數(shù)賦初值的一個方法是簡單的OLS法,這是因為即使在異方差性(有界)存在的條件下,OLS也提供了一致的點估計。為了用OLS估計值作為初值,首先要估計OLS方程:ycxz在對這個方程進(jìn)行估計后,C系數(shù)向量中的元素c(1),c(2),c(3)將包含OLS估計的結(jié)果。第四十九頁,共八十三頁,2022年,8月28日49
要設(shè)置c(4)表示OLS估計的殘差方差,可以在命令窗口中輸入下面的賦值語句:c(4)=eq1.@se^2??蛇x擇地,可以利用簡單的賦值語句任意設(shè)置參數(shù)值:c(4)=0.005如果在執(zhí)行了OLS估計及其后面的命令后馬上估計logl模型的話,那么將用設(shè)置在C向量里的值作為初值。象上面提到的那樣,將參數(shù)初始值賦值為已知值的另一種方法是在似然模型說明中加入@param語句。例如,如果在logl的說明中加入了下面的行:@paramc(1)0.1c(2)0.1c(3)0.1c(4)0.005那么EViews會將初值設(shè)置為:c(1)=c(2)=c(3)=0.1,c(4)=0.005。第五十頁,共八十三頁,2022年,8月28日50
2.估計樣本
在估計對數(shù)似然函數(shù)的參數(shù)時,EViews就在Estimation對話框里指定了將使用的觀測值的樣本。EViews在當(dāng)前參數(shù)值下,將使用觀測值順序或方程順序用樣本中的每一個觀測值來對logl中每個表達(dá)式進(jìn)行計算。所有這些計算都服從于EViews中關(guān)于序列表達(dá)式計算的規(guī)則。如果在對數(shù)似然序列的初始參數(shù)值中有缺少值,EViews將發(fā)出錯誤信息而估計過程也將終止。相對于其他的EViews內(nèi)部過程的處理方式,在估計模型參數(shù)時logl估計不能進(jìn)行終點調(diào)整或是去掉那些欠缺值的觀測值。第五十一頁,共八十三頁,2022年,8月28日51§8.1.6LogL視圖
(1)likelihoodSpecification:顯示定義和編輯似然說明的窗口。(2)EstimationOutput:顯示通過最大化似然函數(shù)得到的估計結(jié)果。(3)CovarianceMatrix:顯示參數(shù)估計的協(xié)方差矩陣。這是通過計算在最優(yōu)參數(shù)值下一階導(dǎo)數(shù)的外積的和的逆求得的??梢杂聾cov這個函數(shù)將其保存為(SYM)矩陣。(4)WaldCoefficientTest:執(zhí)行Wald系數(shù)限制檢驗。參看系數(shù)檢驗,關(guān)于Wald檢驗的討論。第五十二頁,共八十三頁,2022年,8月28日52
(5)Gradients:如果模型沒有被估計,顯示當(dāng)前參數(shù)值下logL的梯度(一階導(dǎo)數(shù))視圖,若模型已經(jīng)被估計,則顯示收斂的參數(shù)值下logL的梯度視圖。當(dāng)處理收斂問題時,這些圖將成為有用的鑒別工具。梯度表格視圖可以檢查似然函數(shù)的梯度。如果模型迭代尚未收斂,那么就在當(dāng)前參數(shù)值下計算梯度,若模型已經(jīng)估計出來了,就在收斂的參數(shù)值下計算。第五十三頁,共八十三頁,2022年,8月28日53
視圖在處理收斂性或奇異點問題時是一個有用的鑒別工具。一個常見的問題是,由于錯誤的定義似然過程,不恰當(dāng)?shù)某踔担蚴悄P筒豢勺R別等導(dǎo)致某個參數(shù)的導(dǎo)數(shù)為零可能產(chǎn)生奇異矩陣。第五十四頁,共八十三頁,2022年,8月28日54
(6)CheckDerivatives(檢查導(dǎo)數(shù))可以用CheckDerivatives視圖來檢查數(shù)值微分或是解析微分表達(dá)式的是否有效。如果使用了@param語句,顯示在初值下數(shù)值微分和解析微分(如果可獲得)的值,如果沒有使用@param語句,則給出在當(dāng)前值下數(shù)值微分和解析微分的值,以及用模型中所有樣本計算的每個系數(shù)數(shù)值微分的和。第五十五頁,共八十三頁,2022年,8月28日55該視圖的第一部分列出了用戶提供的導(dǎo)數(shù)的名稱,步長參數(shù)和計算導(dǎo)數(shù)時使用的系數(shù)值。本例中列出的相對步長和最小步長都是默認(rèn)設(shè)置。第二部分用模型中所有樣本計算了每個系數(shù)的數(shù)值微分的和,如果可能的話,還要計算解析微分的和。第五十六頁,共八十三頁,2022年,8月28日56§8.1.7LogL過程
(1)Estimate:彈出一個設(shè)置估計選項的對話框,并估計對數(shù)似然函數(shù)的參數(shù)。(2)MakeModel:建立一個估計對數(shù)似然函數(shù)說明的未命名的模型對象。(3)MakeGradientGroup:在參數(shù)估計值下創(chuàng)建一個未命名的對數(shù)似然函數(shù)的梯度組(一階導(dǎo)數(shù))。這些梯度常用來構(gòu)造拉格朗日乘數(shù)檢驗。(4)UpdateCoefsfromLogL:用似然函數(shù)對象得出的估計值來更新系數(shù)向量。該過程可以將極大似然估計結(jié)果作為其他估計問題的初始值。大多數(shù)這些過程和EViews的其他估計對象相似。下面我們將著重介紹LogL對象所獨有的特征。第五十七頁,共八十三頁,2022年,8月28日57LogL對象的標(biāo)準(zhǔn)輸出除了包含系數(shù)和標(biāo)準(zhǔn)差估計外,還描述了估計的方法,估計使用的樣本,估計的日期和時間,計算順序以及估計過程收斂的信息,EViews還提供了對數(shù)似然函數(shù)值,平均對數(shù)似然函數(shù)值,系數(shù)個數(shù)以及三個信息標(biāo)準(zhǔn)。
第五十八頁,共八十三頁,2022年,8月28日58§8.1.8問題解答
由于logL對象的極大的靈活性,在使用對數(shù)似然方法進(jìn)行估計時比使用其他EViews的內(nèi)部估計方法更容易出錯。如果在估計時遇到了困難,下面的建議將幫助解決這些問題。
(1)檢查似然說明
一個簡單錯誤包括錯誤符號就可以使估計過程停止工作。必須檢查模型的每個參數(shù)是否確實定義了(在某些說明中可能不得不將參數(shù)標(biāo)準(zhǔn)化)。另外,模型中出現(xiàn)的每個參數(shù)必須直接的或間接的影響似然貢獻(xiàn)。CheckDerivatives視圖可以部分的解決后者的問題。第五十九頁,共八十三頁,2022年,8月28日59
(2)選擇初值
如果由于缺失值或數(shù)學(xué)運(yùn)算域錯誤(對負(fù)數(shù)取對數(shù)或取平方根,除數(shù)為零等等)導(dǎo)致樣本中似然貢獻(xiàn)無法評價,那么將立刻停止估計并給出錯誤信息:“Cannotcompute@loglduetomissingvalues”。另外,選擇的初值不恰當(dāng)也可能使似然函數(shù)效果不理想。應(yīng)該給參數(shù)一個合理的初值。如果有一個近似求解該問題的簡單的估計技術(shù),可以把由該方法得到的估計值作為極大似然估計的初值。
(3)檢查導(dǎo)數(shù)
如果使用解析微分,使用CheckDerivatives視圖來確認(rèn)是否已經(jīng)正確的標(biāo)記了導(dǎo)數(shù)。如果使用的是數(shù)值微分,就要考慮指定解析微分或是調(diào)整導(dǎo)數(shù)方法或步長選項。第六十頁,共八十三頁,2022年,8月28日60
(4)估計前正確地處理滯后值問題
和其他EViews估計程序相比,在估計一個對數(shù)似然模型時,logL估計程序不會用NA或滯后形式從樣本中自動去掉某個觀測值。如果似然說明包含滯后值,必須從估計樣本的開始值中去掉一些觀測值,或者必須對說明作出標(biāo)記從而使前面樣本中的錯誤值不會影響到整個樣本(參見AR(1)和GARCH模型的示例)。既然用來評價似然函數(shù)的序列包含在工作文件中(除非使用了@temp語句刪除它們),那么可以利用這些中間結(jié)果序列來檢驗對數(shù)似然和中間序列的值,以發(fā)現(xiàn)滯后和缺值的問題。第六十一頁,共八十三頁,2022年,8月28日61
(5)修正模型參數(shù)
如果有導(dǎo)致數(shù)學(xué)錯誤的參數(shù)值的問題,可以考慮修正模型參數(shù)以將之限制在其有效域內(nèi)。我們看到的大多數(shù)估計過程中的錯誤信息本身具有解釋。而錯誤信息“nearsingularmatrix(近似奇異矩陣)”卻不是很明確的。當(dāng)EViews不能求由導(dǎo)數(shù)外積的和構(gòu)成的矩陣的逆以致不能決定最優(yōu)化過程下一步的方向時,就給出這個錯誤信息。這個錯誤可能意味著各種類型的錯誤,其中包括不適當(dāng)?shù)某踔?,但是?dāng)在理論上或?qū)τ行?shù)據(jù),模型不可識別時,幾乎總是出現(xiàn)這種錯誤。第六十二頁,共八十三頁,2022年,8月28日62§8.1.9限制
必須注意對數(shù)似然中估計參數(shù)使用的算法并不是對任意的問題都適用的。在似然貢獻(xiàn)的導(dǎo)數(shù)的外積的和的基礎(chǔ)上,該算法給出了對數(shù)似然函數(shù)的Hessian矩陣的近似值。該近似值是建立在極大似然目標(biāo)函數(shù)的函數(shù)形式和統(tǒng)計特性的基礎(chǔ)之上的。此外,只有當(dāng)描述似然貢獻(xiàn)的序列,其單個貢獻(xiàn)都被正確的設(shè)定并具有好的理論時,對數(shù)似然定義的參數(shù)值的標(biāo)準(zhǔn)差才有意義。
第六十三頁,共八十三頁,2022年,8月28日63用來描述似然貢獻(xiàn)的表達(dá)式必須遵守EViews關(guān)于序列表達(dá)式的規(guī)則。這些限制暗示我們不能在似然說明中使用矩陣運(yùn)算。為了寫出聯(lián)立方程模型的似然函數(shù),必須寫出行列式和二次型的表達(dá)式。對于那些多于三個方程的模型而言,這樣做盡管是可能的,但會很繁瑣。這種情況的例子參見多元GARCH程序。另外,對數(shù)似然方法不能直接處理一般的不等式約束的最優(yōu)化問題。第六十四頁,共八十三頁,2022年,8月28日64§8.2實例
一、AR(1)模型的極大似然函數(shù)
一階自回歸過程有如下形式,記作AR(1):(8.2.8)~在此情形下,總體參數(shù)向量為=(c,,
2)。當(dāng)||<1時,存在一個滿足(8.2.8)的協(xié)方差平穩(wěn)過程,(8.2.8)可寫成MA()過程:
第六十五頁,共八十三頁,2022年,8月28日65
上式取期望:
所以平穩(wěn)AR(1)過程的均值為其方差為
第六十六頁,共八十三頁,2022年,8月28日66首先考察樣本中第一個觀察值y1的概率分布。由于在|
|<1時,存在一個滿足(8.2.8)的協(xié)方差平穩(wěn)過程,此時,,
所以,第一個觀察值的密度函數(shù)形如(8.2.9)
第六十七頁,共八十三頁,2022年,8月28日67
接下來考慮第二個觀察值
Y2在觀察到的
Y1=y1條件下的分布。由(8.2.8)(8.2.10)可以將隨機(jī)變量
Y1視做確定性常數(shù)
y1。在此情形下,(8.2.10)給出Y2作為常數(shù)(c+y1)
和隨機(jī)變量
u2的和。因此~,(8.2.11)
第六十八頁,共八十三頁,2022年,8月28日68一般地,Y1
,
Y2
,。。。,
Yt-1只通過
Yt-1
對
Yt起作用,第
t個觀察值以前
t-1個觀察值為條件的分布為:
(8.2.12)第六十九頁,共八十三頁,2022年,8月28日69
完全樣本的似然函數(shù)為
(8.2.13)其對數(shù)似然函數(shù)可由(8.2.13)取對數(shù)求得:(8.2.14)將(8.2.11)和(8.2.12)代入(8.2.14),由AR(1)過程得到一個樣本量為T的樣本的對數(shù)似然為(8.2.15)第七十頁,共八十三頁,2022年,8月28日70
例8.2AR(1)模型的極大似然估計
我們用數(shù)據(jù)生成過程生成Y,其中ut是一個白噪聲過程,即ut~.N(0,2)
。根據(jù)AR(1)過程的樣本量為T的對數(shù)似然函數(shù)為(8.1.15)式。第七十一頁,共八十三頁,2022年,8月28日71可以寫出式(8.2.16)的對數(shù)似然函數(shù),總體參數(shù)向量為。利用最小二乘估計給出初值:c=-0.5,=0.85,2=eq1.@se^2=0.87。第七十二頁,共八十三頁,2022年,8月28日72
利用極大似然估計方法估計的AR(1)模型:
@LOGLLOGL1@PARAMC(1)-0.5PHI(1)0.85S2(1)0.87RES=@RECODE(D1=1,Y-C(1)/(1-PHI(1)),Y-C(1)-PHI(1)*Y(-1))VAR=@RECODE(D1=1,S2(1)/(1-PHI(1)^2),S2(1))SRES=RES/@SQRT(VAR)LOGL1=LOG(@DNORM(SRES))-LOG(VAR)/2@TEMPRESVARSRESLOGL1在這個說明文本中,參數(shù)C(1)和PHI(1)分別代表了式(8.3.5)中的未知參數(shù)c和;S2就是對數(shù)似然函數(shù)(8.3.6)中的待估參數(shù)2;D1是一個序列,它的第一個值為1,其余的值均為0;@RECODE函數(shù)的第一個參數(shù)是條件,如果滿足,執(zhí)行第一個表達(dá)式;否則執(zhí)行第二個表達(dá)式。第七十三頁,共八十三頁,2022年,8月28日73AR(1)模型的表達(dá)式為:(-3.19)(17.34)第七十四頁,共八十三頁,2022年,8月28日74
二、GARCH(p,q)的極大似然函數(shù)
標(biāo)準(zhǔn)的GARCH(p,q)模型的形式為:(8.2.19)要想寫出GARCH(p,q)模型的極大似然函數(shù),首先要分析擾動項
ut
的密度函數(shù)。為了方便起見,我們對方程(8.2.19)采用另外一種方法來表示,它對
ut的序列相關(guān)施以更強(qiáng)的假定。假定;(8.2.20)這里,{vt}是一個i.i.d.序列,其均值為0,方差為1:第七十五頁,共八十三頁,2022年,8月28日75
如果
ht的變化服從(8.2.21)那么
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 物流理賠合同范例
- 勞務(wù)指派合同范例
- 山東商業(yè)職業(yè)技術(shù)學(xué)院《土壤學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 公司轉(zhuǎn)供電合同范例
- 2024年半合成抗生素項目可行性研究報告
- 山東輕工職業(yè)學(xué)院《燃料電池》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年中國八角三孔平底板臺燈水晶配件市場調(diào)查研究報告
- 2024年中國充電式LED臺燈市場調(diào)查研究報告
- 購買黃沙石子合同范例
- 山地魚塘租賃合同范例
- YY/T 0916.1-2021醫(yī)用液體和氣體用小孔徑連接件第1部分:通用要求
- 醫(yī)務(wù)科工作思路(計劃)6篇
- GA 614-2006警用防割手套
- 智慧購物中心整體解決方案
- 壓力表以及壓力變送器-課件
- BIM技術(shù)咨詢管理服務(wù)招標(biāo)投標(biāo)文件技術(shù)標(biāo)
- 最美動畫大師新海誠介紹PPT講義
- 送達(dá)地址確認(rèn)書(完整版)
- 高中化學(xué)必修1 優(yōu)秀課件萃取
- 河北省邢臺市藥品零售藥店企業(yè)藥房名單目錄
- 外貿(mào)基礎(chǔ)知識考題(50題)
評論
0/150
提交評論