2021-2022學(xué)年遼寧省錦州市新海新區(qū)實(shí)驗(yàn)校中考數(shù)學(xué)對點(diǎn)突破模擬試卷含解析_第1頁
2021-2022學(xué)年遼寧省錦州市新海新區(qū)實(shí)驗(yàn)校中考數(shù)學(xué)對點(diǎn)突破模擬試卷含解析_第2頁
2021-2022學(xué)年遼寧省錦州市新海新區(qū)實(shí)驗(yàn)校中考數(shù)學(xué)對點(diǎn)突破模擬試卷含解析_第3頁
2021-2022學(xué)年遼寧省錦州市新海新區(qū)實(shí)驗(yàn)校中考數(shù)學(xué)對點(diǎn)突破模擬試卷含解析_第4頁
2021-2022學(xué)年遼寧省錦州市新海新區(qū)實(shí)驗(yàn)校中考數(shù)學(xué)對點(diǎn)突破模擬試卷含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2021-2022中考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.下列運(yùn)算正確的是()A.﹣3a+a=﹣4a B.3x2?2x=6x2C.4a2﹣5a2=a2 D.(2x3)2÷2x2=2x42.若a+b=3,,則ab等于()A.2 B.1 C.﹣2 D.﹣13.關(guān)于x的方程(a﹣1)x|a|+1﹣3x+2=0是一元二次方程,則()A.a(chǎn)≠±1 B.a(chǎn)=1 C.a(chǎn)=﹣1 D.a(chǎn)=±14.如圖,A、B、C三點(diǎn)在正方形網(wǎng)格線的交點(diǎn)處,若將△ABC繞著點(diǎn)A逆時(shí)針旋轉(zhuǎn)得到△AC′B′,則tanB′的值為()A. B. C. D.5.如圖,在△ABC中,∠ABC=90°,AB=8,BC=1.若DE是△ABC的中位線,延長DE交△ABC的外角∠ACM的平分線于點(diǎn)F,則線段DF的長為()A.7 B.8 C.9 D.106.下列說法中,錯(cuò)誤的是()A.兩個(gè)全等三角形一定是相似形B.兩個(gè)等腰三角形一定相似C.兩個(gè)等邊三角形一定相似D.兩個(gè)等腰直角三角形一定相似7.下列各數(shù)3.1415926,,,,,中,無理數(shù)有()A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)8.如果,那么()A. B. C. D.9.如圖,是直角三角形,,,點(diǎn)在反比例函數(shù)的圖象上.若點(diǎn)在反比例函數(shù)的圖象上,則的值為()A.2 B.-2 C.4 D.-410.下列交通標(biāo)志是中心對稱圖形的為()A. B. C. D.11.許昌市2017年國內(nèi)生產(chǎn)總值完成1915.5億元,同比增長9.3%,增速居全省第一位,用科學(xué)記數(shù)法表示1915.5億應(yīng)為()A.1915.15×108 B.19.155×1010C.1.9155×1011 D.1.9155×101212.下列運(yùn)算正確的是()A.a(chǎn)3?a2=a6 B.(x3)3=x6 C.x5+x5=x10 D.﹣a8÷a4=﹣a4二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,小強(qiáng)和小華共同站在路燈下,小強(qiáng)的身高EF=1.8m,小華的身高M(jìn)N=1.5m,他們的影子恰巧等于自己的身高,即BF=1.8m,CN=1.5m,且兩人相距4.7m,則路燈AD的高度是___.14.已知y與x的函數(shù)滿足下列條件:①它的圖象經(jīng)過(1,1)點(diǎn);②當(dāng)時(shí),y隨x的增大而減小.寫出一個(gè)符合條件的函數(shù):__________.15.如圖,在每個(gè)小正方形的邊長為1的網(wǎng)格中,點(diǎn)A,B,C均在格點(diǎn)上.(1)AB的長等于____;(2)在△ABC的內(nèi)部有一點(diǎn)P,滿足S△PABS△PBCS△PCA=1:2:3,請?jiān)谌鐖D所示的網(wǎng)格中,用無刻度的直尺,畫出點(diǎn)P,并簡要說明點(diǎn)P的位置是如何找到的(不要求證明)_______16.如圖,在梯形ABCD中,AB∥CD,∠C=90°,BC=CD=4,AD=2,若,用、表示=_____.17.閱讀以下作圖過程:第一步:在數(shù)軸上,點(diǎn)O表示數(shù)0,點(diǎn)A表示數(shù)1,點(diǎn)B表示數(shù)5,以AB為直徑作半圓(如圖);第二步:以B點(diǎn)為圓心,1為半徑作弧交半圓于點(diǎn)C(如圖);第三步:以A點(diǎn)為圓心,AC為半徑作弧交數(shù)軸的正半軸于點(diǎn)M.請你在下面的數(shù)軸中完成第三步的畫圖(保留作圖痕跡,不寫畫法),并寫出點(diǎn)M表示的數(shù)為______.18.使得分式值為零的x的值是_________;三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,邊長為1的正方形ABCD的對角線AC、BD相交于點(diǎn)O.有直角∠MPN,使直角頂點(diǎn)P與點(diǎn)O重合,直角邊PM、PN分別與OA、OB重合,然后逆時(shí)針旋轉(zhuǎn)∠MPN,旋轉(zhuǎn)角為θ(0°<θ<90°),PM、PN分別交AB、BC于E、F兩點(diǎn),連接EF交OB于點(diǎn)G.(1)求四邊形OEBF的面積;(2)求證:OG?BD=EF2;(3)在旋轉(zhuǎn)過程中,當(dāng)△BEF與△COF的面積之和最大時(shí),求AE的長.20.(6分)如圖,在一個(gè)平臺遠(yuǎn)處有一座古塔,小明在平臺底部的點(diǎn)C處測得古塔頂部B的仰角為60°,在平臺上的點(diǎn)E處測得古塔頂部的仰角為30°.已知平臺的縱截面為矩形DCFE,DE=2米,DC=20米,求古塔AB的高(結(jié)果保留根號)21.(6分)“校園詩歌大賽”結(jié)束后,張老師和李老師將所有參賽選手的比賽成績(得分均為整數(shù))進(jìn)行整理,并分別繪制成扇形統(tǒng)計(jì)圖和頻數(shù)直方圖部分信息如下:本次比賽參賽選手共有人,扇形統(tǒng)計(jì)圖中“69.5~79.5”這一組人數(shù)占總參賽人數(shù)的百分比為;賽前規(guī)定,成績由高到低前60%的參賽選手獲獎(jiǎng).某參賽選手的比賽成績?yōu)?8分,試判斷他能否獲獎(jiǎng),并說明理由;成績前四名是2名男生和2名女生,若從他們中任選2人作為獲獎(jiǎng)代表發(fā)言,試求恰好選中1男1女的概率.22.(8分)如圖1,在四邊形ABCD中,AD∥BC,AB=CD=13,AD=11,BC=21,E是BC的中點(diǎn),P是AB上的任意一點(diǎn),連接PE,將PE繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°得到PQ.(1)如圖2,過A點(diǎn),D點(diǎn)作BC的垂線,垂足分別為M,N,求sinB的值;(2)若P是AB的中點(diǎn),求點(diǎn)E所經(jīng)過的路徑弧EQ的長(結(jié)果保留π);(3)若點(diǎn)Q落在AB或AD邊所在直線上,請直接寫出BP的長.23.(8分)如圖,BC是路邊坡角為30°,長為10米的一道斜坡,在坡頂燈桿CD的頂端D處有一探射燈,射出的邊緣光線DA和DB與水平路面AB所成的夾角∠DAN和∠DBN分別是37°和60°(圖中的點(diǎn)A、B、C、D、M、N均在同一平面內(nèi),CM∥AN).求燈桿CD的高度;求AB的長度(結(jié)果精確到0.1米).(參考數(shù)據(jù):=1.1.sin37°≈060,cos37°≈0.80,tan37°≈0.75)24.(10分)已知關(guān)于x的一元二次方程x2﹣2(k﹣1)x+k(k+2)=0有兩個(gè)不相等的實(shí)數(shù)根.求k的取值范圍;寫出一個(gè)滿足條件的k的值,并求此時(shí)方程的根.25.(10分)閱讀下列材料,解答下列問題:材料1.把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變形叫做因式分解,也叫分解因式.如果把整式的乘法看成一個(gè)變形過程,那么多項(xiàng)式的因式分解就是它的逆過程.公式法(平方差公式、完全平方公式)是因式分解的一種基本方法.如對于二次三項(xiàng)式a2+2ab+b2,可以逆用乘法公式將它分解成(a+b)2的形式,我們稱a2+2ab+b2為完全平方式.但是對于一般的二次三項(xiàng)式,就不能直接應(yīng)用完全平方了,我們可以在二次三項(xiàng)式中先加上一項(xiàng),使其配成完全平方式,再減去這項(xiàng),使整個(gè)式子的值不變,于是有:x2+2ax﹣3a2=x2+2ax+a2﹣a2﹣3a2=(x+a)2﹣(2a)2=(x+3a)(x﹣a)材料2.因式分解:(x+y)2+2(x+y)+1解:將“x+y”看成一個(gè)整體,令x+y=A,則原式=A2+2A+1=(A+1)2再將“A”還原,得:原式=(x+y+1)2.上述解題用到的是“整體思想”,整體思想是數(shù)學(xué)解題中常見的一種思想方法,請你解答下列問題:(1)根據(jù)材料1,把c2﹣6c+8分解因式;(2)結(jié)合材料1和材料2完成下面小題:①分解因式:(a﹣b)2+2(a﹣b)+1;②分解因式:(m+n)(m+n﹣4)+3.26.(12分)為保護(hù)環(huán)境,我市公交公司計(jì)劃購買A型和B型兩種環(huán)保節(jié)能公交車共10輛.若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車1輛,共需350萬元.求購買A型和B型公交車每輛各需多少萬元?預(yù)計(jì)在某線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費(fèi)用不超過1200萬元,且確保這10輛公交車在該線路的年均載客總和不少于680萬人次,則該公司有哪幾種購車方案?在(2)的條件下,哪種購車方案總費(fèi)用最少?最少總費(fèi)用是多少萬元?27.(12分)如圖,矩形OABC中,點(diǎn)O為原點(diǎn),點(diǎn)A的坐標(biāo)為(0,8),點(diǎn)C的坐標(biāo)為(6,0).拋物線經(jīng)過A、C兩點(diǎn),與AB邊交于點(diǎn)D.(1)求拋物線的函數(shù)表達(dá)式;(2)點(diǎn)P為線段BC上一個(gè)動(dòng)點(diǎn)(不與點(diǎn)C重合),點(diǎn)Q為線段AC上一個(gè)動(dòng)點(diǎn),AQ=CP,連接PQ,設(shè)CP=m,△CPQ的面積為S.①求S關(guān)于m的函數(shù)表達(dá)式,并求出m為何值時(shí),S取得最大值;②當(dāng)S最大時(shí),在拋物線的對稱軸l上若存在點(diǎn)F,使△FDQ為直角三角形,請直接寫出所有符合條件的F的坐標(biāo);若不存在,請說明理由.

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、D【解析】

根據(jù)合并同類項(xiàng)、單項(xiàng)式的乘法、積的乘方和單項(xiàng)式的乘法逐項(xiàng)計(jì)算,結(jié)合排除法即可得出答案.【詳解】A.﹣3a+a=﹣2a,故不正確;B.3x2?2x=6x3,故不正確;C.4a2﹣5a2=-a2,故不正確;D.(2x3)2÷2x2=4x6÷2x2=2x4,故正確;故選D.【點(diǎn)睛】本題考查了合并同類項(xiàng)、單項(xiàng)式的乘法、積的乘方和單項(xiàng)式的乘法,熟練掌握它們的運(yùn)算法則是解答本題的關(guān)鍵.2、B【解析】

∵a+b=3,∴(a+b)2=9∴a2+2ab+b2=9∵a2+b2=7∴7+2ab=9,7+2ab=9∴ab=1.故選B.考點(diǎn):完全平方公式;整體代入.3、C【解析】

根據(jù)一元一次方程的定義即可求出答案.【詳解】由題意可知:,解得a=?1故選C.【點(diǎn)睛】本題考查一元二次方程的定義,解題的關(guān)鍵是熟練運(yùn)用一元二次方程的定義,本題屬于基礎(chǔ)題型.4、D【解析】

過C點(diǎn)作CD⊥AB,垂足為D,根據(jù)旋轉(zhuǎn)性質(zhì)可知,∠B′=∠B,把求tanB′的問題,轉(zhuǎn)化為在Rt△BCD中求tanB.【詳解】過C點(diǎn)作CD⊥AB,垂足為D.根據(jù)旋轉(zhuǎn)性質(zhì)可知,∠B′=∠B.在Rt△BCD中,tanB=,∴tanB′=tanB=.故選D.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì),旋轉(zhuǎn)后對應(yīng)角相等;三角函數(shù)的定義及三角函數(shù)值的求法.5、B【解析】

根據(jù)三角形中位線定理求出DE,得到DF∥BM,再證明EC=EF=AC,由此即可解決問題.【詳解】在RT△ABC中,∵∠ABC=90°,AB=2,BC=1,∴AC===10,∵DE是△ABC的中位線,∴DF∥BM,DE=BC=3,∴∠EFC=∠FCM,∵∠FCE=∠FCM,∴∠EFC=∠ECF,∴EC=EF=AC=5,∴DF=DE+EF=3+5=2.故選B.6、B【解析】

根據(jù)相似圖形的定義,結(jié)合選項(xiàng)中提到的圖形,對選項(xiàng)一一分析,選出正確答案.【詳解】解:A、兩個(gè)全等的三角形一定相似,正確;B、兩個(gè)等腰三角形一定相似,錯(cuò)誤,等腰三角形的形狀不一定相同;C、兩個(gè)等邊三角形一定相似;正確,等邊三角形形狀相同,只是大小不同;D、兩個(gè)等腰直角三角形一定相似,正確,等腰直角三角形形狀相同,只是大小不同.故選B.【點(diǎn)睛】本題考查的是相似形的定義,聯(lián)系圖形,即圖形的形狀相同,但大小不一定相同的變換是相似變換.特別注意,本題是選擇錯(cuò)誤的,一定要看清楚題.7、B【解析】

根據(jù)無理數(shù)的定義即可判定求解.【詳解】在3.1415926,,,,,中,,3.1415926,是有理數(shù),,,是無理數(shù),共有3個(gè),故選:B.【點(diǎn)睛】本題主要考查了無理數(shù)的定義,其中初中范圍內(nèi)學(xué)習(xí)的無理數(shù)有:等;開方開不盡的數(shù);以及像0.1010010001…,等有這樣規(guī)律的數(shù).8、B【解析】試題分析:根據(jù)二次根式的性質(zhì),由此可知2-a≥0,解得a≤2.故選B點(diǎn)睛:此題主要考查了二次根式的性質(zhì),解題關(guān)鍵是明確被開方數(shù)的符號,然后根據(jù)性質(zhì)可求解.9、D【解析】

要求函數(shù)的解析式只要求出點(diǎn)的坐標(biāo)就可以,過點(diǎn)、作軸,軸,分別于、,根據(jù)條件得到,得到:,然后用待定系數(shù)法即可.【詳解】過點(diǎn)、作軸,軸,分別于、,設(shè)點(diǎn)的坐標(biāo)是,則,,,,,,,,,,,,因?yàn)辄c(diǎn)在反比例函數(shù)的圖象上,則,點(diǎn)在反比例函數(shù)的圖象上,點(diǎn)的坐標(biāo)是,.故選:.【點(diǎn)睛】本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,相似三角形的判定與性質(zhì),求函數(shù)的解析式的問題,一般要轉(zhuǎn)化為求點(diǎn)的坐標(biāo)的問題,求出圖象上點(diǎn)的橫縱坐標(biāo)的積就可以求出反比例函數(shù)的解析式.10、C【解析】

根據(jù)中心對稱圖形的定義即可解答.【詳解】解:A、屬于軸對稱圖形,不是中心對稱的圖形,不合題意;

B、是中心對稱的圖形,但不是交通標(biāo)志,不符合題意;

C、屬于軸對稱圖形,屬于中心對稱的圖形,符合題意;

D、不是中心對稱的圖形,不合題意.

故選C.【點(diǎn)睛】本題考查中心對稱圖形的定義:繞對稱中心旋轉(zhuǎn)180度后所得的圖形與原圖形完全重合.11、C【解析】

科學(xué)記數(shù)法的表示形式為的形式,其中為整數(shù).確定的值時(shí),要看把原數(shù)變成時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,的絕對值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對值>1時(shí),是正數(shù);當(dāng)原數(shù)的絕對值<1時(shí),是負(fù)數(shù).【詳解】用科學(xué)記數(shù)法表示1915.5億應(yīng)為1.9155×1011,故選C.【點(diǎn)睛】考查科學(xué)記數(shù)法,掌握絕對值大于1的數(shù)的表示方法是解題的關(guān)鍵.12、D【解析】

各項(xiàng)計(jì)算得到結(jié)果,即可作出判斷.【詳解】A、原式=a5,不符合題意;B、原式=x9,不符合題意;C、原式=2x5,不符合題意;D、原式=-a4,符合題意,故選D.【點(diǎn)睛】此題考查了整式的混合運(yùn)算,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、4m【解析】

設(shè)路燈的高度為x(m),根據(jù)題意可得△BEF∽△BAD,再利用相似三角形的對應(yīng)邊正比例整理得DF=x﹣1.8,同理可得DN=x﹣1.5,因?yàn)閮扇讼嗑?.7m,可得到關(guān)于x的一元一次方程,然后求解方程即可.【詳解】設(shè)路燈的高度為x(m),∵EF∥AD,∴△BEF∽△BAD,∴EFAD即1.8x解得:DF=x﹣1.8,∵M(jìn)N∥AD,∴△CMN∽△CAD,∴MNAD即1.5x解得:DN=x﹣1.5,∵兩人相距4.7m,∴FD+ND=4.7,∴x﹣1.8+x﹣1.5=4.7,解得:x=4m,答:路燈AD的高度是4m.14、y=-x+2(答案不唯一)【解析】①圖象經(jīng)過(1,1)點(diǎn);②當(dāng)x>1時(shí).y隨x的增大而減小,這個(gè)函數(shù)解析式為y=-x+2,故答案為y=-x+2(答案不唯一).15、;答案見解析.【解析】

(1)AB==.故答案為.(2)如圖AC與網(wǎng)格相交,得到點(diǎn)D、E,取格點(diǎn)F,連接FB并且延長,與網(wǎng)格相交,得到M,N,G.連接DN,EM,DG,DN與EM相交于點(diǎn)P,點(diǎn)P即為所求.理由:平行四邊形ABME的面積:平行四邊形CDNB的面積:平行四邊形DEMG的面積=1:2:1,△PAB的面積=平行四邊形ABME的面積,△PBC的面積=平行四邊形CDNB的面積,△PAC的面積=△PNG的面積=△DGN的面積=平行四邊形DEMG的面積,∴S△PAB:S△PBC:S△PCA=1:2:1.16、【解析】

過點(diǎn)A作AE⊥DC,利用向量知識解題.【詳解】解:過點(diǎn)A作AE⊥DC于E,∵AE⊥DC,BC⊥DC,∴AE∥BC,又∵AB∥CD,∴四邊形AECB是矩形,∴AB=EC,AE=BC=4,∴DE===2,∴AB=EC=2=DC,∵,∴,∵,∴,∴,故答案為.【點(diǎn)睛】向量知識只有使用滬教版(上海)教材的學(xué)生才學(xué)過,全國絕大部分地區(qū)將向量放在高中階段學(xué)習(xí).17、作圖見解析,【解析】解:如圖,點(diǎn)M即為所求.連接AC、BC.由題意知:AB=4,BC=1.∵AB為圓的直徑,∴∠ACB=90°,則AM=AC===,∴點(diǎn)M表示的數(shù)為.故答案為.點(diǎn)睛:本題主要考查作圖﹣尺規(guī)作圖,解題的關(guān)鍵是熟練掌握尺規(guī)作圖和圓周角定理及勾股定理.18、2【解析】

根據(jù)分式的性質(zhì),要使分式有意義,則必須分母不能為0,要使分式為零,則只有分子為0,因此計(jì)算即可.【詳解】解:要使分式有意義則,即要使分式為零,則,即綜上可得故答案為2【點(diǎn)睛】本題主要考查分式的性質(zhì),關(guān)鍵在于分式的分母不能為0.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1);(2)詳見解析;(3)AE=.【解析】

(1)由四邊形ABCD是正方形,直角∠MPN,易證得△BOE≌△COF(ASA),則可證得S四邊形OEBF=S△BOC=S正方形ABCD;(2)易證得△OEG∽△OBE,然后由相似三角形的對應(yīng)邊成比例,證得OG?OB=OE2,再利用OB與BD的關(guān)系,OE與EF的關(guān)系,即可證得結(jié)論;(3)首先設(shè)AE=x,則BE=CF=1﹣x,BF=x,繼而表示出△BEF與△COF的面積之和,然后利用二次函數(shù)的最值問題,求得AE的長.【詳解】(1)∵四邊形ABCD是正方形,∴OB=OC,∠OBE=∠OCF=45°,∠BOC=90°,∴∠BOF+∠COF=90°,∵∠EOF=90°,∴∠BOF+∠COE=90°,∴∠BOE=∠COF,在△BOE和△COF中,∴△BOE≌△COF(ASA),∴S四邊形OEBF=S△BOE+S△BOE=S△BOE+S△COF=S△BOC=S正方形ABCD(2)證明:∵∠EOG=∠BOE,∠OEG=∠OBE=45°,∴△OEG∽△OBE,∴OE:OB=OG:OE,∴OG?OB=OE2,∵∴OG?BD=EF2;(3)如圖,過點(diǎn)O作OH⊥BC,∵BC=1,∴設(shè)AE=x,則BE=CF=1﹣x,BF=x,∴S△BEF+S△COF=BE?BF+CF?OH∵∴當(dāng)時(shí),S△BEF+S△COF最大;即在旋轉(zhuǎn)過程中,當(dāng)△BEF與△COF的面積之和最大時(shí),【點(diǎn)睛】本題屬于四邊形的綜合題,主要考查了正方形的性質(zhì),旋轉(zhuǎn)的性質(zhì)、全等三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì)、勾股定理以及二次函數(shù)的最值問題.注意掌握轉(zhuǎn)化思想的應(yīng)用是解此題的關(guān)鍵.20、古塔AB的高為(10+2)米.【解析】試題分析:延長EF交AB于點(diǎn)G.利用AB表示出EG,AC.讓EG-AC=1即可求得AB長.試題解析:如圖,延長EF交AB于點(diǎn)G.設(shè)AB=x米,則BG=AB﹣2=(x﹣2)米.則EG=(AB﹣2)÷tan∠BEG=(x﹣2),CA=AB÷tan∠ACB=x.則CD=EG﹣AC=(x﹣2)﹣x=1.解可得:x=10+2.答:古塔AB的高為(10+2)米.21、(1)50,30%;(2)不能,理由見解析;(3)P=【解析】【分析】(1)由直方圖可知59.5~69.5分?jǐn)?shù)段有5人,由扇形統(tǒng)計(jì)圖可知這一分?jǐn)?shù)段人占10%,據(jù)此可得選手總數(shù),然后求出89.5~99.5這一分?jǐn)?shù)段所占的百分比,用1減去其他分?jǐn)?shù)段的百分比即可得到分?jǐn)?shù)段69.5~79.5所占的百分比;(2)觀察可知79.5~99.5這一分?jǐn)?shù)段的人數(shù)占了60%,據(jù)此即可判斷出該選手是否獲獎(jiǎng);(3)畫樹狀圖得到所有可能的情況,再找出符合條件的情況后,用概率公式進(jìn)行求解即可.【詳解】(1)本次比賽選手共有(2+3)÷10%=50(人),“89.5~99.5”這一組人數(shù)占百分比為:(8+4)÷50×100%=24%,所以“69.5~79.5”這一組人數(shù)占總?cè)藬?shù)的百分比為:1-10%-24%-36%=30%,故答案為50,30%;(2)不能;由統(tǒng)計(jì)圖知,79.5~89.5和89.5~99.5兩組占參賽選手60%,而78<79.5,所以他不能獲獎(jiǎng);(3)由題意得樹狀圖如下由樹狀圖知,共有12種等可能結(jié)果,其中恰好選中1男1女的共有8種結(jié)果,故P==.【點(diǎn)睛】本題考查了直方圖、扇形圖、概率,結(jié)合統(tǒng)計(jì)圖找到必要信息進(jìn)行解題是關(guān)鍵.22、(1)1213;(2)5π;(3)PB的值為10526或【解析】

(1)如圖1中,作AM⊥CB用M,DN⊥BC于N,根據(jù)題意易證Rt△ABM≌Rt△DCN,再根據(jù)全等三角形的性質(zhì)可得出對應(yīng)邊相等,根據(jù)勾股定理可求出AM的值,即可得出結(jié)論;(2)連接AC,根據(jù)勾股定理求出AC的長,再根據(jù)弧長計(jì)算公式即可得出結(jié)論;(3)當(dāng)點(diǎn)Q落在直線AB上時(shí),根據(jù)相似三角形的性質(zhì)可得對應(yīng)邊成比例,即可求出PB的值;當(dāng)點(diǎn)Q在DA的延長線上時(shí),作PH⊥AD交DA的延長線于H,延長HP交BC于G,設(shè)PB=x,則AP=13﹣x,再根據(jù)全等三角形的性質(zhì)可得對應(yīng)邊相等,即可求出PB的值.【詳解】解:(1)如圖1中,作AM⊥CB用M,DN⊥BC于N.∴∠DNM=∠AMN=90°,∵AD∥BC,∴∠DAM=∠AMN=∠DNM=90°,∴四邊形AMND是矩形,∴AM=DN,∵AB=CD=13,∴Rt△ABM≌Rt△DCN,∴BM=CN,∵AD=11,BC=21,∴BM=CN=5,∴AM==12,在Rt△ABM中,sinB==.(2)如圖2中,連接AC.在Rt△ACM中,AC===20,∵PB=PA,BE=EC,∴PE=AC=10,∴的長==5π.(3)如圖3中,當(dāng)點(diǎn)Q落在直線AB上時(shí),∵△EPB∽△AMB,∴==,∴==,∴PB=.如圖4中,當(dāng)點(diǎn)Q在DA的延長線上時(shí),作PH⊥AD交DA的延長線于H,延長HP交BC于G.設(shè)PB=x,則AP=13﹣x.∵AD∥BC,∴∠B=∠HAP,∴PG=x,PH=(13﹣x),∴BG=x,∵△PGE≌△QHP,∴EG=PH,∴﹣x=(13﹣x),∴BP=.綜上所述,滿足條件的PB的值為或.【點(diǎn)睛】本題考查了相似三角形與全等三角形的性質(zhì),解題的關(guān)鍵是熟練的掌握相似三角形與全等三角形的判定與性質(zhì).23、(1)10米;(2)11.4米【解析】

(1)延長DC交AN于H.只要證明BC=CD即可;(2)在Rt△BCH中,求出BH、CH,在Rt△ADH中求出AH即可解決問題.【詳解】(1)如圖,延長DC交AN于H,∵∠DBH=60°,∠DHB=90°,∴∠BDH=30°,∵∠CBH=30°,∴∠CBD=∠BDC=30°,∴BC=CD=10(米);(2)在Rt△BCH中,CH=BC=5,BH=5≈8.65,∴DH=15,在Rt△ADH中,AH=≈=20,∴AB=AH﹣BH=20﹣8.65=11.4(米).【點(diǎn)睛】本題考查解直角三角形的應(yīng)用﹣坡度坡角問題,解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造直角三角形解決問題.24、方程的根【解析】

(1)根據(jù)方程的系數(shù)結(jié)合根的判別式,即可得出關(guān)于k的一元一次不等式,解之即可得出k的取值范圍;(1)取k=0,再利用分解因式法解一元二次方程,即可求出方程的根.【詳解】(1)∵關(guān)于x的一元二次方程x1﹣1(k﹣a)x+k(k+1)=0有兩個(gè)不相等的實(shí)數(shù)根,∴△=[﹣1(k﹣1)]1﹣4k(k﹣1)=﹣16k+4>0,解得:k<.(1)當(dāng)k=0時(shí),原方程為x1+1x=x(x+1)=0,解得:x1=0,x1=﹣1.∴當(dāng)k=0時(shí),方程的根為0和﹣1.【點(diǎn)睛】本題考查了根的判別式以及因式分解法解一元二次方程,解題的關(guān)鍵是:(1)牢記“當(dāng)△>0時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根”;(1)取k=0,再利用分解因式法解方程.25、(1)(c-4)(c-2);(2)①(a-b+1)2;②(m+n-1)(m+n-3).【解析】

(1)根據(jù)材料1,可以對c2-6c+8分解因式;(2)①根據(jù)材料2的整體思想可以對(a-b)2+2(a-b)+1分解因式;②根據(jù)材料1和材料2可以對(m+n)(m+n-4)+3分解因式.【詳解】(1)c2-6c+8=c2-6c+32-32+8=(c-3)2-1=(c-3+1)(c-3+1)=(c-4)(c-2);(2)①(a-b)2+2(a-b)+1設(shè)a-b=t,則原式=t2+2t+1=(t+1)2,則(a-b)2+2(a-b)+1=(a-b+1)2;②(m+n)(m+n-4)+3設(shè)m+n=t,則t(t-4)+3=t2-4t+3=t2-4t+22-22+3=(t-2)2-1=(t-2+1)(t-2-1)=(t-1)(t-3),則(m+n)(m+n-4)+3=(m+n-1)(m+n-3).【點(diǎn)睛】本題考查因式分解的應(yīng)用,解題的關(guān)鍵是明確題意,可以根據(jù)材料中的例子對所求的式子進(jìn)行因式分解.26、(1)購買A型公交車每輛需100萬元,購買B型公交車每輛需150萬元.(2)三種方案:①購買A型公交車6輛,則B型公交車4輛;②購買A型公交車7輛,則B型公交車3輛;③購買A型公交車8輛,則B型公交車2輛;(3)購買A型公交車8輛,B型公交車2輛費(fèi)用最少,最少費(fèi)用為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論