2022-2023學(xué)年廣東省肇慶市懷集縣市級(jí)名校中考數(shù)學(xué)全真模擬試題含解析_第1頁
2022-2023學(xué)年廣東省肇慶市懷集縣市級(jí)名校中考數(shù)學(xué)全真模擬試題含解析_第2頁
2022-2023學(xué)年廣東省肇慶市懷集縣市級(jí)名校中考數(shù)學(xué)全真模擬試題含解析_第3頁
2022-2023學(xué)年廣東省肇慶市懷集縣市級(jí)名校中考數(shù)學(xué)全真模擬試題含解析_第4頁
2022-2023學(xué)年廣東省肇慶市懷集縣市級(jí)名校中考數(shù)學(xué)全真模擬試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023年中考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.有個(gè)零件(正方體中間挖去一個(gè)圓柱形孔)如圖放置,它的主視圖是A. B. C. D.2.小桐把一副直角三角尺按如圖所示的方式擺放在一起,其中,,,,則等于A. B. C. D.3.有四包真空包裝的火腿腸,每包以標(biāo)準(zhǔn)質(zhì)量450g為基準(zhǔn),超過的克數(shù)記作正數(shù),不足的克數(shù)記作負(fù)數(shù).下面的數(shù)據(jù)是記錄結(jié)果,其中與標(biāo)準(zhǔn)質(zhì)量最接近的是()A.+2 B.﹣3 C.+4 D.﹣14.(2011貴州安順,4,3分)我市某一周的最高氣溫統(tǒng)計(jì)如下表:最高氣溫(℃)

25

26

27

28

天數(shù)

1

1

2

3

則這組數(shù)據(jù)的中位數(shù)與眾數(shù)分別是()A.27,28 B.27.5,28 C.28,27 D.26.5,275.計(jì)算±的值為()A.±3 B.±9 C.3 D.96.如圖,⊙O是△ABC的外接圓,∠B=60°,⊙O的半徑為4,則AC的長等于()A.4 B.6 C.2 D.87.如圖,若干個(gè)全等的正五邊形排成環(huán)狀,圖中所示的是前3個(gè)正五邊形,要完成這一圓環(huán)還需正五邊形的個(gè)數(shù)為()A.10 B.9 C.8 D.78.若關(guān)于x的一元二次方程x(x+2)=m總有兩個(gè)不相等的實(shí)數(shù)根,則()A.m<﹣1 B.m>1 C.m>﹣1 D.m<19.下列說法正確的是()A.對(duì)角線相等且互相垂直的四邊形是菱形B.對(duì)角線互相平分的四邊形是正方形C.對(duì)角線互相垂直的四邊形是平行四邊形D.對(duì)角線相等且互相平分的四邊形是矩形10.若點(diǎn)M(﹣3,y1),N(﹣4,y2)都在正比例函數(shù)y=﹣k2x(k≠0)的圖象上,則y1與y2的大小關(guān)系是()A.y1<y2B.y1>y2C.y1=y2D.不能確定11.關(guān)于二次函數(shù),下列說法正確的是()A.圖像與軸的交點(diǎn)坐標(biāo)為 B.圖像的對(duì)稱軸在軸的右側(cè)C.當(dāng)時(shí),的值隨值的增大而減小 D.的最小值為-312.下列說法不正確的是()A.選舉中,人們通常最關(guān)心的數(shù)據(jù)是眾數(shù)B.從1,2,3,4,5中隨機(jī)抽取一個(gè)數(shù),取得奇數(shù)的可能性比較大C.甲、乙兩人在相同條件下各射擊10次,他們的平均成績相同,方差分別為S甲2=0.4,S乙2=0.6,則甲的射擊成績較穩(wěn)定D.?dāng)?shù)據(jù)3,5,4,1,﹣2的中位數(shù)是4二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.分解因式___________14.分解因式:2x2﹣8xy+8y2=.15.甲乙兩人8次射擊的成績?nèi)鐖D所示(單位:環(huán))根據(jù)圖中的信息判斷,這8次射擊中成績比較穩(wěn)定的是______(填“甲”或“乙”)16.如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(1,1),以點(diǎn)O為旋轉(zhuǎn)中心,將點(diǎn)A逆時(shí)針旋轉(zhuǎn)到點(diǎn)B的位置,則的長為_____.17.已知x+y=,xy=,則x2y+xy2的值為____.18.如圖,圓柱形容器高為18cm,底面周長為24cm,在杯內(nèi)壁離杯底4cm的點(diǎn)B處有乙滴蜂蜜,此時(shí)一只螞蟻正好在杯外壁,離杯上沿2cm與蜂蜜相對(duì)的點(diǎn)A處,則螞蟻從外幣A處到達(dá)內(nèi)壁B處的最短距離為_______.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)[閱讀]我們定義:如果三角形有一邊上的中線長恰好等于這邊的長,那么稱這個(gè)三角形為“中邊三角形”,把這條邊和其邊上的中線稱為“對(duì)應(yīng)邊”.[理解]如圖1,Rt△ABC是“中邊三角形”,∠C=90°,AC和BD是“對(duì)應(yīng)邊”,求tanA的值;[探究]如圖2,已知菱形ABCD的邊長為a,∠ABC=2β,點(diǎn)P,Q從點(diǎn)A同時(shí)出發(fā),以相同速度分別沿折線AB﹣BC和AD﹣DC向終點(diǎn)C運(yùn)動(dòng),記點(diǎn)P經(jīng)過的路程為s.當(dāng)β=45°時(shí),若△APQ是“中邊三角形”,試求的值.20.(6分)據(jù)城市速遞報(bào)道,我市一輛高為2.5米的客車,卡在快速路引橋上高為2.55米的限高桿的上端,已知引橋的坡角∠ABC為14°,請(qǐng)結(jié)合示意圖,用你學(xué)過的知識(shí)通過數(shù)據(jù)說明客車不能通過的原因.(參考數(shù)據(jù):sin14°=0.24,cos14°=0.97,tan14°=0.25)21.(6分)已知關(guān)于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分別為△ABC三邊的長.如果x=﹣1是方程的根,試判斷△ABC的形狀,并說明理由;如果方程有兩個(gè)相等的實(shí)數(shù)根,試判斷△ABC的形狀,并說明理由;如果△ABC是等邊三角形,試求這個(gè)一元二次方程的根.22.(8分)如圖1,的余切值為2,,點(diǎn)D是線段上的一動(dòng)點(diǎn)(點(diǎn)D不與點(diǎn)A、B重合),以點(diǎn)D為頂點(diǎn)的正方形的另兩個(gè)頂點(diǎn)E、F都在射線上,且點(diǎn)F在點(diǎn)E的右側(cè),聯(lián)結(jié),并延長,交射線于點(diǎn)P.(1)點(diǎn)D在運(yùn)動(dòng)時(shí),下列的線段和角中,________是始終保持不變的量(填序號(hào));①;②;③;④;⑤;⑥;(2)設(shè)正方形的邊長為x,線段的長為y,求y與x之間的函數(shù)關(guān)系式,并寫出定義域;(3)如果與相似,但面積不相等,求此時(shí)正方形的邊長.23.(8分)矩形AOBC中,OB=4,OA=1.分別以O(shè)B,OA所在直線為x軸,y軸,建立如圖1所示的平面直角坐標(biāo)系.F是BC邊上一個(gè)動(dòng)點(diǎn)(不與B,C重合),過點(diǎn)F的反比例函數(shù)y=(k>0)的圖象與邊AC交于點(diǎn)E。當(dāng)點(diǎn)F運(yùn)動(dòng)到邊BC的中點(diǎn)時(shí),求點(diǎn)E的坐標(biāo);連接EF,求∠EFC的正切值;如圖2,將△CEF沿EF折疊,點(diǎn)C恰好落在邊OB上的點(diǎn)G處,求此時(shí)反比例函數(shù)的解析式.24.(10分)某中學(xué)九年級(jí)甲、乙兩班商定舉行一次遠(yuǎn)足活動(dòng),、兩地相距10千米,甲班從地出發(fā)勻速步行到地,乙班從地出發(fā)勻速步行到地.兩班同時(shí)出發(fā),相向而行.設(shè)步行時(shí)間為小時(shí),甲、乙兩班離地的距離分別為千米、千米,、與的函數(shù)關(guān)系圖象如圖所示,根據(jù)圖象解答下列問題:直接寫出、與的函數(shù)關(guān)系式;求甲、乙兩班學(xué)生出發(fā)后,幾小時(shí)相遇?相遇時(shí)乙班離地多少千米?甲、乙兩班相距4千米時(shí)所用時(shí)間是多少小時(shí)?25.(10分)如圖,在△ABC中,∠C=90°,AD平分∠CAB,交CB于點(diǎn)D,過點(diǎn)D作DE⊥AB,于點(diǎn)E求證:△ACD≌△AED;若∠B=30°,CD=1,求BD的長.26.(12分)如圖,在平行四邊形ABCD中,DB⊥AB,點(diǎn)E是BC邊的中點(diǎn),過點(diǎn)E作EF⊥CD,垂足為F,交AB的延長線于點(diǎn)G.(1)求證:四邊形BDFG是矩形;(2)若AE平分∠BAD,求tan∠BAE的值.27.(12分)如圖,在?ABCD中,點(diǎn)O是對(duì)角線AC、BD的交點(diǎn),點(diǎn)E是邊CD的中點(diǎn),點(diǎn)F在BC的延長線上,且CF=BC,求證:四邊形OCFE是平行四邊形.

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、C【解析】

根據(jù)主視圖的定義判斷即可.【詳解】解:從正面看一個(gè)正方形被分成三部分,兩條分別是虛線,故正確.故選:.【點(diǎn)睛】此題考查的是主視圖的判斷,掌握主視圖的定義是解決此題的關(guān)鍵.2、C【解析】

根據(jù)三角形的內(nèi)角和定理和三角形外角性質(zhì)進(jìn)行解答即可.【詳解】如圖:,,,,∴==,故選C.【點(diǎn)睛】本題考查了三角形內(nèi)角和定理、三角形外角的性質(zhì)、熟練掌握相關(guān)定理及性質(zhì)以及一副三角板中各個(gè)角的度數(shù)是解題的關(guān)鍵.3、D【解析】試題解析:因?yàn)閨+2|=2,|-3|=3,|+4|=4,|-1|=1,由于|-1|最小,所以從輕重的角度看,質(zhì)量是-1的工件最接近標(biāo)準(zhǔn)工件.故選D.4、A【解析】根據(jù)表格可知:數(shù)據(jù)25出現(xiàn)1次,26出現(xiàn)1次,27出現(xiàn)2次,28出現(xiàn)3次,∴眾數(shù)是28,這組數(shù)據(jù)從小到大排列為:25,26,27,27,28,28,28∴中位數(shù)是27∴這周最高氣溫的中位數(shù)與眾數(shù)分別是27,28故選A.5、B【解析】

∵(±9)2=81,∴±±9.故選B.6、A【解析】

解:連接OA,OC,過點(diǎn)O作OD⊥AC于點(diǎn)D,∵∠AOC=2∠B,且∠AOD=∠COD=∠AOC,∴∠COD=∠B=60°;在Rt△COD中,OC=4,∠COD=60°,∴CD=OC=2,∴AC=2CD=4.故選A.【點(diǎn)睛】本題考查三角形的外接圓;勾股定理;圓周角定理;垂徑定理.7、D【解析】分析:先根據(jù)多邊形的內(nèi)角和公式(n﹣2)?180°求出正五邊形的每一個(gè)內(nèi)角的度數(shù),再延長五邊形的兩邊相交于一點(diǎn),并根據(jù)四邊形的內(nèi)角和求出這個(gè)角的度數(shù),然后根據(jù)周角等于360°求出完成這一圓環(huán)需要的正五邊形的個(gè)數(shù),然后減去3即可得解.詳解:∵五邊形的內(nèi)角和為(5﹣2)?180°=540°,∴正五邊形的每一個(gè)內(nèi)角為540°÷5=18°,如圖,延長正五邊形的兩邊相交于點(diǎn)O,則∠1=360°﹣18°×3=360°﹣324°=36°,360°÷36°=1.∵已經(jīng)有3個(gè)五邊形,∴1﹣3=7,即完成這一圓環(huán)還需7個(gè)五邊形.故選D.點(diǎn)睛:本題考查了多邊形的內(nèi)角和公式,延長正五邊形的兩邊相交于一點(diǎn),并求出這個(gè)角的度數(shù)是解題的關(guān)鍵,注意需要減去已有的3個(gè)正五邊形.8、C【解析】

將關(guān)于x的一元二次方程化成標(biāo)準(zhǔn)形式,然后利用Δ>0,即得m的取值范圍.【詳解】因?yàn)榉匠淌顷P(guān)于x的一元二次方程方程,所以可得,Δ=4+4m>0,解得m>﹣1,故選D.【點(diǎn)睛】本題熟練掌握一元二次方程的基本概念是本題的解題關(guān)鍵.9、D【解析】分析:根據(jù)菱形,正方形,平行四邊形,矩形的判定定理,進(jìn)行判定,即可解答.詳解:A、對(duì)角線互相平分且垂直的四邊形是菱形,故錯(cuò)誤;

B、四條邊相等的四邊形是菱形,故錯(cuò)誤;

C、對(duì)角線相互平分的四邊形是平行四邊形,故錯(cuò)誤;

D、對(duì)角線相等且相互平分的四邊形是矩形,正確;

故選D.點(diǎn)睛:本題考查了菱形,正方形,平行四邊形,矩形的判定定理,解決本題的關(guān)鍵是熟記四邊形的判定定理.10、A【解析】

根據(jù)正比例函數(shù)的增減性解答即可.【詳解】∵正比例函數(shù)y=﹣k2x(k≠0),﹣k2<0,∴該函數(shù)的圖象中y隨x的增大而減小,∵點(diǎn)M(﹣3,y1),N(﹣4,y2)在正比例函數(shù)y=﹣k2x(k≠0)圖象上,﹣4<﹣3,∴y2>y1,故選:A.【點(diǎn)睛】本題考查了正比例函數(shù)圖象與系數(shù)的關(guān)系:對(duì)于y=kx(k為常數(shù),k≠0),當(dāng)k>0時(shí),y=kx的圖象經(jīng)過一、三象限,y隨x的增大而增大;當(dāng)k<0時(shí),y=kx的圖象經(jīng)過二、四象限,y隨x的增大而減小.11、D【解析】分析:根據(jù)題目中的函數(shù)解析式可以判斷各個(gè)選項(xiàng)中的結(jié)論是否成立,從而可以解答本題.詳解:∵y=2x2+4x-1=2(x+1)2-3,∴當(dāng)x=0時(shí),y=-1,故選項(xiàng)A錯(cuò)誤,該函數(shù)的對(duì)稱軸是直線x=-1,故選項(xiàng)B錯(cuò)誤,當(dāng)x<-1時(shí),y隨x的增大而減小,故選項(xiàng)C錯(cuò)誤,當(dāng)x=-1時(shí),y取得最小值,此時(shí)y=-3,故選項(xiàng)D正確,故選D.點(diǎn)睛:本題考查二次函數(shù)的性質(zhì)、二次函數(shù)的最值,解答本題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)解答.12、D【解析】試題分析:A、選舉中,人們通常最關(guān)心的數(shù)據(jù)為出現(xiàn)次數(shù)最多的數(shù),所以A選項(xiàng)的說法正確;B、從1,2,3,4,5中隨機(jī)抽取一個(gè)數(shù),由于奇數(shù)由3個(gè),而偶數(shù)有2個(gè),則取得奇數(shù)的可能性比較大,所以B選項(xiàng)的說法正確;C、甲、乙兩人在相同條件下各射擊10次,他們的平均成績相同,方差分別為S甲2=0.4,S乙2=0.6,則甲的射擊成績較穩(wěn)定,所以C選項(xiàng)的說法正確;D、數(shù)據(jù)3,5,4,1,﹣2由小到大排列為﹣2,1,3,4,5,所以中位數(shù)是3,所以D選項(xiàng)的說法錯(cuò)誤.故選D.考點(diǎn):隨機(jī)事件發(fā)生的可能性(概率)的計(jì)算方法二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、【解析】

原式提取公因式,再利用完全平方公式分解即可.【詳解】原式=2x(y2+2y+1)=2x(y+1)2,故答案為2x(y+1)2【點(diǎn)睛】此題考查了提公因式法與公式法的綜合運(yùn)用,熟練掌握因式分解的方法是解本題的關(guān)鍵.14、1(x﹣1y)1【解析】試題分析:1x1﹣8xy+8y1=1(x1﹣4xy+4y1)=1(x﹣1y)1.故答案為:1(x﹣1y)1.考點(diǎn):提公因式法與公式法的綜合運(yùn)用15、甲【解析】由圖表明乙這8次成績偏離平均數(shù)大,即波動(dòng)大,而甲這8次成績,分布比較集中,各數(shù)據(jù)偏離平均小,方差小,則S2甲<S2乙,即兩人的成績更加穩(wěn)定的是甲.故答案為甲.16、.【解析】

由點(diǎn)A(1,1),可得OA的長,點(diǎn)A在第一象限的角平分線上,可得∠AOB=45°,,再根據(jù)弧長公式計(jì)算即可.【詳解】∵A(1,1),∴OA=,點(diǎn)A在第一象限的角平分線上,∵以點(diǎn)O為旋轉(zhuǎn)中心,將點(diǎn)A逆時(shí)針旋轉(zhuǎn)到點(diǎn)B的位置,∴∠AOB=45°,∴的長為=,故答案為:.【點(diǎn)睛】本題考查坐標(biāo)與圖形變化——旋轉(zhuǎn),弧長公式,熟練掌握旋轉(zhuǎn)的性質(zhì)以及弧長公式是解題的關(guān)鍵.本題中求出OA=以及∠AOB=45°也是解題的關(guān)鍵.17、3【解析】分析:因式分解,把已知整體代入求解.詳解:x2y+xy2=xy(x+y)=3.點(diǎn)睛:因式分解的方法:(1)提取公因式法.ma+mb+mc=m(a+b+c).(2)公式法:完全平方公式,平方差公式.(3)十字相乘法.因式分解的時(shí)候,要注意整體換元法的靈活應(yīng)用,訓(xùn)練將一個(gè)式子看做一個(gè)整體,利用上述方法因式分解的能力.18、20cm.【解析】

將杯子側(cè)面展開,建立A關(guān)于EF的對(duì)稱點(diǎn)A′,根據(jù)兩點(diǎn)之間線段最短可知A′B的長度即為所求.【詳解】解:如答圖,將杯子側(cè)面展開,作A關(guān)于EF的對(duì)稱點(diǎn)A′,連接A′B,則A′B即為最短距離.根據(jù)勾股定理,得(cm).故答案為:20cm.【點(diǎn)睛】本題考查了平面展開---最短路徑問題,將圖形展開,利用軸對(duì)稱的性質(zhì)和勾股定理進(jìn)行計(jì)算是解題的關(guān)鍵.同時(shí)也考查了同學(xué)們的創(chuàng)造性思維能力.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、tanA=;綜上所述,當(dāng)β=45°時(shí),若△APQ是“中邊三角形”,的值為或.【解析】

(1)由AC和BD是“對(duì)應(yīng)邊”,可得AC=BD,設(shè)AC=2x,則CD=x,BD=2x,可得∴BC=x,可得tanA===(2)當(dāng)點(diǎn)P在BC上時(shí),連接AC,交PQ于點(diǎn)E,延長AB交QP的延長線于點(diǎn)F,可得AC是QP的垂直平分線.可求得△AEF∽△CEP,=,分兩種情況:當(dāng)?shù)走匬Q與它的中線AE相等,即AE=PQ時(shí),==,∴=;當(dāng)腰AP與它的中線QM相等時(shí),即AP=QM時(shí),QM=AQ,(3)作QN⊥AP于N,可得tan∠APQ===,tan∠APE===,∴=,【詳解】解:[理解]∵AC和BD是“對(duì)應(yīng)邊”,∴AC=BD,設(shè)AC=2x,則CD=x,BD=2x,∵∠C=90°,∴BC===x,∴tanA===;[探究]若β=45°,當(dāng)點(diǎn)P在AB上時(shí),△APQ是等腰直角三角形,不可能是“中邊三角形”,如圖2,當(dāng)點(diǎn)P在BC上時(shí),連接AC,交PQ于點(diǎn)E,延長AB交QP的延長線于點(diǎn)F,∵PC=QC,∠ACB=∠ACD,∴AC是QP的垂直平分線,∴AP=AQ,∵∠CAB=∠ACP,∠AEF=∠CEP,∴△AEF∽△CEP,∴===,∵PE=CE,∴=,分兩種情況:當(dāng)?shù)走匬Q與它的中線AE相等,即AE=PQ時(shí),==,∴=;當(dāng)腰AP與它的中線QM相等時(shí),即AP=QM時(shí),QM=AQ,如圖3,作QN⊥AP于N,∴MN=AN=PM=QM,∴QN=MN,∴ntan∠APQ===,∴ta∠APE===,∴=,綜上所述,當(dāng)β=45°時(shí),若△APQ是“中邊三角形”,的值為或.【點(diǎn)睛】本題是一道相似形綜合運(yùn)用的試題,考查了相似三角形的判定及性質(zhì)的運(yùn)用,勾股定理的運(yùn)用,等腰直角三角形的性質(zhì)的運(yùn)用,等腰三角形的性質(zhì)的運(yùn)用,銳角三角形函數(shù)值的運(yùn)用,解答時(shí)靈活運(yùn)用三角函數(shù)值建立方程求解是解答的關(guān)鍵.20、客車不能通過限高桿,理由見解析【解析】

根據(jù)DE⊥BC,DF⊥AB,得到∠EDF=∠ABC=14°.在Rt△EDF中,根據(jù)cos∠EDF=,求出DF的值,即可判斷.【詳解】∵DE⊥BC,DF⊥AB,∴∠EDF=∠ABC=14°.在Rt△EDF中,∠DFE=90°,∵cos∠EDF=,∴DF=DE?cos∠EDF=2.55×cos14°≈2.55×0.97≈2.1.∵限高桿頂端到橋面的距離DF為2.1米,小于客車高2.5米,∴客車不能通過限高桿.【點(diǎn)睛】考查解直角三角形,選擇合適的銳角三角函數(shù)是解題的關(guān)鍵.21、(1)△ABC是等腰三角形;(2)△ABC是直角三角形;(3)x1=0,x2=﹣1.【解析】試題分析:(1)直接將x=﹣1代入得出關(guān)于a,b的等式,進(jìn)而得出a=b,即可判斷△ABC的形狀;(2)利用根的判別式進(jìn)而得出關(guān)于a,b,c的等式,進(jìn)而判斷△ABC的形狀;(3)利用△ABC是等邊三角形,則a=b=c,進(jìn)而代入方程求出即可.試題解析:(1)△ABC是等腰三角形;理由:∵x=﹣1是方程的根,∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,∴a+c﹣2b+a﹣c=0,∴a﹣b=0,∴a=b,∴△ABC是等腰三角形;(2)∵方程有兩個(gè)相等的實(shí)數(shù)根,∴(2b)2﹣4(a+c)(a﹣c)=0,∴4b2﹣4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形;(3)當(dāng)△ABC是等邊三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理為:2ax2+2ax=0,∴x2+x=0,解得:x1=0,x2=﹣1.考點(diǎn):一元二次方程的應(yīng)用.22、(1)④⑤;(2);(3)或.【解析】

(1)作于M,交于N,如圖,利用三角函數(shù)的定義得到,設(shè),則,利用勾股定理得,解得,即,,設(shè)正方形的邊長為x,則,,由于,則可判斷為定值;再利用得到,則可判斷為定值;在中,利用勾股定理和三角函數(shù)可判斷在變化,在變化,在變化;(2)易得四邊形為矩形,則,證明,利用相似比可得到y(tǒng)與x的關(guān)系式;(3)由于,與相似,且面積不相等,利用相似比得到,討論:當(dāng)點(diǎn)P在點(diǎn)F點(diǎn)右側(cè)時(shí),則,所以,當(dāng)點(diǎn)P在點(diǎn)F點(diǎn)左側(cè)時(shí),則,所以,然后分別解方程即可得到正方形的邊長.【詳解】(1)如圖,作于M,交于N,在中,∵,設(shè),則,∵,∴,解得,∴,,設(shè)正方形的邊長為x,在中,∵,∴,∴,在中,,∴為定值;∵,∴,∴為定值;在中,,而在變化,∴在變化,在變化,∴在變化,所以和是始終保持不變的量;故答案為:④⑤(2)∵M(jìn)N⊥AP,DEFG是正方形,∴四邊形為矩形,∴,∵,∴,∴,即,∴(3)∵,與相似,且面積不相等,∴,即,∴,當(dāng)點(diǎn)P在點(diǎn)F點(diǎn)右側(cè)時(shí),AP=AF+PF==,∴,解得,當(dāng)點(diǎn)P在點(diǎn)F點(diǎn)左側(cè)時(shí),,∴,解得,綜上所述,正方形的邊長為或.【點(diǎn)睛】本題考查了相似形綜合題:熟練掌握銳角三角函數(shù)的定義、正方形的性質(zhì)和相似三角形的判定與性質(zhì).23、(1)E(2,1);(2);(1).【解析】

(1)先確定出點(diǎn)C坐標(biāo),進(jìn)而得出點(diǎn)F坐標(biāo),即可得出結(jié)論;(2)先確定出點(diǎn)F的橫坐標(biāo),進(jìn)而表示出點(diǎn)F的坐標(biāo),得出CF,同理表示出CE,即可得出結(jié)論;(1)先判斷出△EHG∽△GBF,即可求出BG,最后用勾股定理求出k,即可得出結(jié)論.【詳解】(1)∵OA=1,OB=4,∴B(4,0),C(4,1),∵F是BC的中點(diǎn),∴F(4,),∵F在反比例y=函數(shù)圖象上,∴k=4×=6,∴反比例函數(shù)的解析式為y=,∵E點(diǎn)的坐標(biāo)為1,∴E(2,1);(2)∵F點(diǎn)的橫坐標(biāo)為4,∴F(4,),∴CF=BC﹣BF=1﹣=∵E的縱坐標(biāo)為1,∴E(,1),∴CE=AC﹣AE=4﹣=,在Rt△CEF中,tan∠EFC=,(1)如圖,由(2)知,CF=,CE=,,過點(diǎn)E作EH⊥OB于H,∴EH=OA=1,∠EHG=∠GBF=90°,∴∠EGH+∠HEG=90°,由折疊知,EG=CE,F(xiàn)G=CF,∠EGF=∠C=90°,∴∠EGH+∠BGF=90°,∴∠HEG=∠BGF,∵∠EHG=∠GBF=90°,∴△EHG∽△GBF,∴,∴,∴BG=,在Rt△FBG中,F(xiàn)G2﹣BF2=BG2,∴()2﹣()2=,∴k=,∴反比例函數(shù)解析式為y=.點(diǎn)睛:此題是反比例函數(shù)綜合題,主要考查了待定系數(shù)法,中點(diǎn)坐標(biāo)公式,相似三角形的判定和性質(zhì),銳角三角函數(shù),求出CE:CF是解本題的關(guān)鍵.24、(1)y1=4x,y2=-5x+1.(2)km.(3)h.【解析】

(1)由圖象直接寫出函數(shù)關(guān)系式;(2)若相遇,甲乙走的總路程之和等于兩地的距離.【詳解】(1)根據(jù)圖可以得到甲2.5小時(shí),走1千米,則每小時(shí)走4千米,則函數(shù)關(guān)系是:y1=4x,乙班從B地出發(fā)勻速步行到A地,2小時(shí)走了1千米,則每小時(shí)走5千米,則函數(shù)關(guān)系式是:y2=?5x+1.(2)由圖象可知甲班速度為4km/h,乙班速度為5km/h,設(shè)甲、乙兩班學(xué)生出發(fā)后,x小時(shí)相遇,則4x+5x=1,解得x=.當(dāng)x=時(shí),y2=?5×+1=,∴相遇時(shí)乙班離A

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論