版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023年中考數(shù)學模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列運算,結(jié)果正確的是()A.m2+m2=m4 B.2m2n÷mn=4mC.(3mn2)2=6m2n4 D.(m+2)2=m2+42.的相反數(shù)是()A.6 B.-6 C. D.3.如圖,已知△ADE是△ABC繞點A逆時針旋轉(zhuǎn)所得,其中點D在射線AC上,設(shè)旋轉(zhuǎn)角為α,直線BC與直線DE交于點F,那么下列結(jié)論不正確的是()A.∠BAC=α B.∠DAE=α C.∠CFD=α D.∠FDC=α4.若拋物線y=kx2﹣2x﹣1與x軸有兩個不同的交點,則k的取值范圍為()A.k>﹣1 B.k≥﹣1 C.k>﹣1且k≠0 D.k≥﹣1且k≠05.如圖,正六邊形ABCDEF內(nèi)接于,M為EF的中點,連接DM,若的半徑為2,則MD的長度為A. B. C.2 D.16.兩個同心圓中大圓的弦AB與小圓相切于點C,AB=8,則形成的圓環(huán)的面積是()A.無法求出 B.8 C.8 D.167.如果y=++3,那么yx的算術(shù)平方根是()A.2 B.3 C.9 D.±38.如圖,點D、E分別為△ABC的邊AB、AC上的中點,則△ADE的面積與四邊形BCED的面積的比為()A.1:2 B.1:3 C.1:4 D.1:19.如圖,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,則∠CDE的大小是()A.40° B.43° C.46° D.54°10.如圖,將△ABC沿DE,EF翻折,頂點A,B均落在點O處,且EA與EB重合于線段EO,若∠DOF=142°,則∠C的度數(shù)為()A.38° B.39° C.42° D.48°二、填空題(共7小題,每小題3分,滿分21分)11.在一條筆直的公路上有A、B、C三地,C地位于A、B兩地之間.甲車從A地沿這條公路勻速駛向C地,乙車從B地沿這條公路勻速駛向A地,在甲、乙行駛過程中,甲、乙兩車各自與C地的距離y(km)與甲車行駛時間t(h)之間的函數(shù)關(guān)系如圖所示.則當乙車到達A地時,甲車已在C地休息了_____小時.12.在△ABC中,AB=13cm,AC=10cm,BC邊上的高為11cm,則△ABC的面積為______cm1.13.如圖,△ABC中,AD是中線,BC=8,∠B=∠DAC,則線段的長為________.14.如圖,在?ABCD中,AD=2,AB=4,∠A=30°,以點A為圓心,AD的長為半徑畫弧交AB于點E,連接CE,則陰影部分的面積是▲(結(jié)果保留π).15.如圖,點E是正方形ABCD的邊CD上一點,以A為圓心,AB為半徑的弧與BE交于點F,則∠EFD=_____°.16.如圖,正方形ABCD的邊長為4,點M在邊DC上,M、N兩點關(guān)于對角線AC對稱,若DM=1,則tan∠ADN=.17.當a<0,b>0時.化簡:=_____.三、解答題(共7小題,滿分69分)18.(10分)已知一個矩形紙片OACB,將該紙片放置在平面直角坐標系中,點A(11,0),點B(0,6),點P為BC邊上的動點(點P不與點B、C重合),經(jīng)過點O、P折疊該紙片,得點B′和折痕OP.設(shè)BP=t.(Ⅰ)如圖①,當∠BOP=300時,求點P的坐標;(Ⅱ)如圖②,經(jīng)過點P再次折疊紙片,使點C落在直線PB′上,得點C′和折痕PQ,若AQ=m,試用含有t的式子表示m;(Ⅲ)在(Ⅱ)的條件下,當點C′恰好落在邊OA上時,求點P的坐標(直接寫出結(jié)果即可).19.(5分)如圖,AB是⊙O的直徑,BC交⊙O于點D,E是弧的中點,AE與BC交于點F,∠C=2∠EAB.求證:AC是⊙O的切線;已知CD=4,CA=6,求AF的長.20.(8分)如圖,△ABC是等邊三角形,AO⊥BC,垂足為點O,⊙O與AC相切于點D,BE⊥AB交AC的延長線于點E,與⊙O相交于G、F兩點.(1)求證:AB與⊙O相切;(2)若等邊三角形ABC的邊長是4,求線段BF的長?21.(10分)如圖,已知在梯形ABCD中,,P是線段BC上一點,以P為圓心,PA為半徑的與射線AD的另一個交點為Q,射線PQ與射線CD相交于點E,設(shè).(1)求證:;(2)如果點Q在線段AD上(與點A、D不重合),設(shè)的面積為y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域;(3)如果與相似,求BP的長.22.(10分)如圖,拋物線與x軸交于點A,B,與軸交于點C,過點C作CD∥x軸,交拋物線的對稱軸于點D,連結(jié)BD,已知點A坐標為(-1,0).求該拋物線的解析式;求梯形COBD的面積.23.(12分)在正方形網(wǎng)格中,每個小正方形的邊長均為1個單位長度,△ABC的三個頂點的位置如圖所示.現(xiàn)將△ABC平移,使點A變換為點D,點E、F分別是B、C的對應(yīng)點.請畫出平移后的△DEF.連接AD、CF,則這兩條線段之間的關(guān)系是________.24.(14分)已知,求代數(shù)式的值.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】
直接利用積的乘方運算法則、合并同類項法則和單項式除以單項式運算法則計算得出答案.【詳解】A.m2+m2=2m2,故此選項錯誤;B.2m2n÷mn=4m,正確;C.(3mn2)2=9m2n4,故此選項錯誤;D.(m+2)2=m2+4m+4,故此選項錯誤.故答案選:B.【點睛】本題考查了乘方運算法則、合并同類項法則和單項式除以單項式運算法則,解題的關(guān)鍵是熟練的掌握乘方運算法則、合并同類項法則和單項式除以單項式運算法則.2、D【解析】
根據(jù)相反數(shù)的定義解答即可.【詳解】根據(jù)相反數(shù)的定義有:的相反數(shù)是.故選D.【點睛】本題考查了相反數(shù)的意義,一個數(shù)的相反數(shù)就是在這個數(shù)前面添上“﹣”號;一個正數(shù)的相反數(shù)是負數(shù),一個負數(shù)的相反數(shù)是正數(shù),1的相反數(shù)是1.3、D【解析】
利用旋轉(zhuǎn)不變性即可解決問題.【詳解】∵△DAE是由△BAC旋轉(zhuǎn)得到,
∴∠BAC=∠DAE=α,∠B=∠D,
∵∠ACB=∠DCF,
∴∠CFD=∠BAC=α,
故A,B,C正確,
故選D.【點睛】本題考查旋轉(zhuǎn)的性質(zhì),解題的關(guān)鍵是熟練掌握旋轉(zhuǎn)不變性解決問題,屬于中考常考題型.4、C【解析】
根據(jù)拋物線y=kx2﹣2x﹣1與x軸有兩個不同的交點,得出b2﹣4ac>0,進而求出k的取值范圍.【詳解】∵二次函數(shù)y=kx2﹣2x﹣1的圖象與x軸有兩個交點,∴b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>0,∴k>﹣1,∵拋物線y=kx2﹣2x﹣1為二次函數(shù),∴k≠0,則k的取值范圍為k>﹣1且k≠0,故選C.【點睛】本題考查了二次函數(shù)y=ax2+bx+c的圖象與x軸交點的個數(shù)的判斷,熟練掌握拋物線與x軸交點的個數(shù)與b2-4ac的關(guān)系是解題的關(guān)鍵.注意二次項系數(shù)不等于0.5、A【解析】
連接OM、OD、OF,由正六邊形的性質(zhì)和已知條件得出OM⊥OD,OM⊥EF,∠MFO=60°,由三角函數(shù)求出OM,再由勾股定理求出MD即可.【詳解】連接OM、OD、OF,∵正六邊形ABCDEF內(nèi)接于⊙O,M為EF的中點,∴OM⊥OD,OM⊥EF,∠MFO=60°,∴∠MOD=∠OMF=90°,∴OM=OF?sin∠MFO=2×=,∴MD=,故選A.【點睛】本題考查了正多邊形和圓、正六邊形的性質(zhì)、三角函數(shù)、勾股定理;熟練掌握正六邊形的性質(zhì),由三角函數(shù)求出OM是解決問題的關(guān)鍵.6、D【解析】試題分析:設(shè)AB于小圓切于點C,連接OC,OB.∵AB于小圓切于點C,∴OC⊥AB,∴BC=AC=AB=×8=4cm.∵圓環(huán)(陰影)的面積=π?OB2-π?OC2=π(OB2-OC2)又∵直角△OBC中,OB2=OC2+BC2∴圓環(huán)(陰影)的面積=π?OB2-π?OC2=π(OB2-OC2)=π?BC2=16π.故選D.考點:1.垂徑定理的應(yīng)用;2.切線的性質(zhì).7、B【解析】解:由題意得:x﹣2≥0,2﹣x≥0,解得:x=2,∴y=1,則yx=9,9的算術(shù)平方根是1.故選B.8、B【解析】
根據(jù)中位線定理得到DE∥BC,DE=BC,從而判定△ADE∽△ABC,然后利用相似三角形的性質(zhì)求解.【詳解】解:∵D、E分別為△ABC的邊AB、AC上的中點,∴DE是△ABC的中位線,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴△ADE的面積:△ABC的面積==1:4,∴△ADE的面積:四邊形BCED的面積=1:3;故選B.【點睛】本題考查三角形中位線定理及相似三角形的判定與性質(zhì).9、C【解析】
根據(jù)DE∥AB可求得∠CDE=∠B解答即可.【詳解】解:∵DE∥AB,∴∠CDE=∠B=46°,故選:C.【點睛】本題主要考查平行線的性質(zhì):兩直線平行,同位角相等.快速解題的關(guān)鍵是牢記平行線的性質(zhì).10、A【解析】分析:根據(jù)翻折的性質(zhì)得出∠A=∠DOE,∠B=∠FOE,進而得出∠DOF=∠A+∠B,利用三角形內(nèi)角和解答即可.詳解:∵將△ABC沿DE,EF翻折,∴∠A=∠DOE,∠B=∠FOE,∴∠DOF=∠DOE+∠EOF=∠A+∠B=142°,∴∠C=180°﹣∠A﹣∠B=180°﹣142°=38°.故選A.點睛:本題考查了三角形內(nèi)角和定理、翻折的性質(zhì)等知識,解題的關(guān)鍵是靈活運用這些知識解決問題,學會把條件轉(zhuǎn)化的思想,屬于中考??碱}型.二、填空題(共7小題,每小題3分,滿分21分)11、2.1.【解析】
根據(jù)題意和函數(shù)圖象中的數(shù)據(jù)可以求得乙車的速度和到達A地時所用的時間,從而可以解答本題.【詳解】由題意可得,甲車到達C地用時4個小時,乙車的速度為:200÷(3.1﹣1)=80km/h,乙車到達A地用時為:(200+240)÷80+1=6.1(小時),當乙車到達A地時,甲車已在C地休息了:6.1﹣4=2.1(小時),故答案為:2.1.【點睛】本題考查了一次函數(shù)的圖象,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.12、2或2.【解析】試題分析:分兩種情況討論:銳角三角形和鈍角三角形,根據(jù)勾股定理求得BD=16,CD=5,再由圖形求出BC,在銳角三角形中,BC=BD+CD=2,在鈍角三角形中,BC=CD-BD=2.故答案為2或2.考點:勾股定理13、【解析】已知BC=8,AD是中線,可得CD=4,在△CBA和△CAD中,由∠B=∠DAC,∠C=∠C,可判定△CBA∽△CAD,根據(jù)相似三角形的性質(zhì)可得,即可得AC2=CD?BC=4×8=32,解得AC=4.14、3【解析】
過D點作DF⊥AB于點F.∵AD=1,AB=4,∠A=30°,∴DF=AD?sin30°=1,EB=AB﹣AE=1.∴陰影部分的面積=平行四邊形ABCD的面積-扇形ADE面積-三角形CBE的面積=4×故答案為:3-15、45【解析】
由四邊形ABCD為正方形及半徑相等得到AB=AF=AD,∠ABD=∠ADB=45°,利用等邊對等角得到兩對角相等,由四邊形ABFD的內(nèi)角和為360度,得到四個角之和為270,利用等量代換得到∠ABF+∠ADF=135°,進而確定出∠1+∠2=45°,由∠EFD為三角形DEF的外角,利用外角性質(zhì)即可求出∠EFD的度數(shù).【詳解】∵正方形ABCD,AF,AB,AD為圓A半徑,∴AB=AF=AD,∠ABD=∠ADB=45°,∴∠ABF=∠AFB,∠AFD=∠ADF,∵四邊形ABFD內(nèi)角和為360°,∠BAD=90°,∴∠ABF+∠AFB+∠AFD+∠ADF=270°,∴∠ABF+∠ADF=135°,∵∠ABD=∠ADB=45°,即∠ABD+∠ADB=90°,∴∠1+∠2=135°?90°=45°,∵∠EFD為△DEF的外角,∴∠EFD=∠1+∠2=45°.故答案為45【點睛】此題考查了切線的性質(zhì),四邊形的內(nèi)角和,等腰三角形的性質(zhì),以及正方形的性質(zhì),熟練掌握性質(zhì)是解本題的關(guān)鍵.16、【解析】
M、N兩點關(guān)于對角線AC對稱,所以CM=CN,進而求出CN的長度.再利用∠ADN=∠DNC即可求得tan∠ADN.【詳解】解:在正方形ABCD中,BC=CD=1.
∵DM=1,
∴CM=2,
∵M、N兩點關(guān)于對角線AC對稱,
∴CN=CM=2.
∵AD∥BC,
∴∠ADN=∠DNC,故答案為【點睛】本題綜合考查了正方形的性質(zhì),軸對稱的性質(zhì)以及銳角三角函數(shù)的定義.17、【解析】分析:按照二次根式的相關(guān)運算法則和性質(zhì)進行計算即可.詳解:∵,∴.故答案為:.點睛:熟記二次根式的以下性質(zhì)是解答本題的關(guān)鍵:(1);(2)=.三、解答題(共7小題,滿分69分)18、(Ⅰ)點P的坐標為(,1).(Ⅱ)(0<t<11).(Ⅲ)點P的坐標為(,1)或(,1).【解析】
(Ⅰ)根據(jù)題意得,∠OBP=90°,OB=1,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t,然后利用勾股定理,即可得方程,解此方程即可求得答案.(Ⅱ)由△OB′P、△QC′P分別是由△OBP、△QCP折疊得到的,可知△OB′P≌△OBP,△QC′P≌△QCP,易證得△OBP∽△PCQ,然后由相似三角形的對應(yīng)邊成比例,即可求得答案.(Ⅲ)首先過點P作PE⊥OA于E,易證得△PC′E∽△C′QA,由勾股定理可求得C′Q的長,然后利用相似三角形的對應(yīng)邊成比例與,即可求得t的值:【詳解】(Ⅰ)根據(jù)題意,∠OBP=90°,OB=1.在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t.∵OP2=OB2+BP2,即(2t)2=12+t2,解得:t1=,t2=-(舍去).∴點P的坐標為(,1).(Ⅱ)∵△OB′P、△QC′P分別是由△OBP、△QCP折疊得到的,∴△OB′P≌△OBP,△QC′P≌△QCP.∴∠OPB′=∠OPB,∠QPC′=∠QPC.∵∠OPB′+∠OPB+∠QPC′+∠QPC=180°,∴∠OPB+∠QPC=90°.∵∠BOP+∠OPB=90°,∴∠BOP=∠CPQ.又∵∠OBP=∠C=90°,∴△OBP∽△PCQ.∴.由題意設(shè)BP=t,AQ=m,BC=11,AC=1,則PC=11-t,CQ=1-m.∴.∴(0<t<11).(Ⅲ)點P的坐標為(,1)或(,1).過點P作PE⊥OA于E,∴∠PEA=∠QAC′=90°.∴∠PC′E+∠EPC′=90°.∵∠PC′E+∠QC′A=90°,∴∠EPC′=∠QC′A.∴△PC′E∽△C′QA.∴.∵PC′=PC=11-t,PE=OB=1,AQ=m,C′Q=CQ=1-m,∴.∴.∵,即,∴,即.將代入,并化簡,得.解得:.∴點P的坐標為(,1)或(,1).19、(1)證明見解析(2)2【解析】
(1)連結(jié)AD,如圖,根據(jù)圓周角定理,由E是的中點得到由于則,再利用圓周角定理得到則所以于是根據(jù)切線的判定定理得到AC是⊙O的切線;先求出的長,用勾股定理即可求出.【詳解】解:(1)證明:連結(jié)AD,如圖,∵E是的中點,∴∵∴∵AB是⊙O的直徑,∴∴∴即∴AC是⊙O的切線;(2)∵∴∵,∴【點睛】本題考查切線的判定與性質(zhì),圓周角定理,屬于圓的綜合題,注意切線的證明方法,是高頻考點.20、(2)證明見試題解析;(2).【解析】
(2)過點O作OM⊥AB于M,證明OM=圓的半徑OD即可;(2)過點O作ON⊥BE,垂足是N,連接OF,得到四邊形OMBN是矩形,在直角△OBM中利用三角函數(shù)求得OM和BM的長,進而求得BN和ON的長,在直角△ONF中利用勾股定理求得NF,則BF即可求解.【詳解】解:(2)過點O作OM⊥AB,垂足是M.∵⊙O與AC相切于點D,∴OD⊥AC,∴∠ADO=∠AMO=90°.∵△ABC是等邊三角形,∴∠DAO=∠MAO,∴OM=OD,∴AB與⊙O相切;(2)過點O作ON⊥BE,垂足是N,連接OF.∵O是BC的中點,∴OB=2.在直角△OBM中,∠MBO=60°,∴∠MOB=30°,BM=OB=2,OM=BM=,∵BE⊥AB,∴四邊形OMBN是矩形,∴ON=BM=2,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度綠色生態(tài)住宅物業(yè)租賃與環(huán)保物業(yè)管理合同3篇
- 學生觀察能力在小學科學教育中的重要性
- 《特許經(jīng)營餐飲業(yè)規(guī)模發(fā)展的影響因素及對策研究》
- 《HS公司集團客戶授信業(yè)務(wù)風險防控的研究》
- 2024年非全部股權(quán)讓步協(xié)議
- 2024版醫(yī)療診斷設(shè)備購銷合同
- 工業(yè)互聯(lián)網(wǎng)平臺助力企業(yè)提升設(shè)備運維效率
- 小學數(shù)學教學中的創(chuàng)新思維訓練方法
- 幼兒園閱讀的心得體會(6篇)
- 二零二五年度大型倉儲物流通風排煙系統(tǒng)改造合同2篇
- Unit4 What can you do Part B read and write (說課稿)-2024-2025學年人教PEP版英語五年級上冊
- 2025年MEMS傳感器行業(yè)深度分析報告
- 2024年度員工試用期勞動合同模板(含保密條款)3篇
- DB23-T 3840-2024非煤礦山隱蔽致災(zāi)因素普查治理工作指南
- 2024年江蘇省徐州市中考化學真題卷及答案解析
- 機關(guān)事業(yè)單位財務(wù)管理制度(六篇)
- 人教版六年級上冊數(shù)學第八單元數(shù)學廣角數(shù)與形單元試題含答案
- 叉車租賃合同模板
- 河道旅游開發(fā)合同
- 住房公積金稽核審計工作方案例文(4篇)
- 口腔門診醫(yī)療風險規(guī)避
評論
0/150
提交評論