版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,點E是矩形ABCD的邊AD的中點,且BE⊥AC于點F,則下列結論中錯誤的是()A.AF=CF B.∠DCF=∠DFCC.圖中與△AEF相似的三角形共有5個 D.tan∠CAD=2.已知:如圖,在平面直角坐標系xOy中,等邊△AOB的邊長為6,點C在邊OA上,點D在邊AB上,且OC=3BD,反比例函數(shù)y=(k≠0)的圖象恰好經(jīng)過點C和點D,則k的值為()A. B. C. D.3.李老師為了了解學生暑期在家的閱讀情況,隨機調查了20名學生某一天的閱讀小時數(shù),具體情況統(tǒng)計如下:閱讀時間(小時)22.533.54學生人數(shù)(名)12863則關于這20名學生閱讀小時數(shù)的說法正確的是()A.眾數(shù)是8 B.中位數(shù)是3C.平均數(shù)是3 D.方差是0.344.如圖,△ABC中,∠B=70°,則∠BAC=30°,將△ABC繞點C順時針旋轉得△EDC.當點B的對應點D恰好落在AC上時,∠CAE的度數(shù)是()A.30° B.40° C.50° D.60°5.如圖,電線桿CD的高度為h,兩根拉線AC與BC互相垂直(A、D、B在同一條直線上),設∠CAB=α,那么拉線BC的長度為()A. B. C. D.6.在平面直角坐標系中,點是線段上一點,以原點為位似中心把放大到原來的兩倍,則點的對應點的坐標為()A. B.或C. D.或7.二次函數(shù)y=(2x-1)2+2的頂點的坐標是()A.(1,2) B.(1,-2) C.(,2)
D.(-,-2)8.如圖,AB與⊙O相切于點B,OA=2,∠OAB=30°,弦BC∥OA,則劣弧的長是()A. B. C. D.9.若點A(1,a)和點B(4,b)在直線y=-2x+m上,則a與b的大小關系是()A.a(chǎn)>b B.a(chǎn)<bC.a(chǎn)=b D.與m的值有關10.已知A樣本的數(shù)據(jù)如下:72,73,76,76,77,78,78,78,B樣本的數(shù)據(jù)恰好是A樣本數(shù)據(jù)每個都加2,則A,B兩個樣本的下列統(tǒng)計量對應相同的是()A.平均數(shù) B.標準差 C.中位數(shù) D.眾數(shù)二、填空題(本大題共6個小題,每小題3分,共18分)11.已知函數(shù)是關于的二次函數(shù),則__________.12.如圖,直角△ABC中,AC=3,BC=4,AB=5,則內(nèi)部五個小直角三角形的周長為_____.13.分解因式:4a2﹣1=_____.14.如圖,在Rt△AOB中,直角邊OA、OB分別在x軸的負半軸和y軸的正半軸上,將△AOB繞點B逆時針旋轉90°后,得到△A′O′B,且反比例函數(shù)y=的圖象恰好經(jīng)過斜邊A′B的中點C,若SABO=4,tan∠BAO=2,則k=_____.15.如圖,Rt△ABC中,∠C=90°,AB=10,,則AC的長為_______.16.已知:如圖,AB為⊙O的直徑,點C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45o.則圖中陰影部分的面積是____________.三、解答題(共8題,共72分)17.(8分)在△ABC中,∠ACB=45°.點D(與點B、C不重合)為射線BC上一動點,連接AD,以AD為一邊且在AD的右側作正方形ADEF.(1)如果AB=AC.如圖①,且點D在線段BC上運動.試判斷線段CF與BD之間的位置關系,并證明你的結論.(2)如果AB≠AC,如圖②,且點D在線段BC上運動.(1)中結論是否成立,為什么?(3)若正方形ADEF的邊DE所在直線與線段CF所在直線相交于點P,設AC=4,BC=3,CD=x,求線段CP的長.(用含x的式子表示)18.(8分)如圖,在△ABC中,∠BAC=90°,AB=AC,D為AB邊上一點,連接CD,過點A作AE⊥CD于點E,且交BC于點F,AG平分∠BAC交CD于點G.求證:BF=AG.19.(8分)如圖,在Rt△ABC中,點O在斜邊AB上,以O為圓心,OB為半徑作圓,分別與BC,AB相交于點D,E,連結AD.已知∠CAD=∠B.求證:AD是⊙O的切線.若BC=8,tanB=,求⊙O的半徑.20.(8分)先化簡,再求值:,其中滿足.21.(8分)已知:如圖,在四邊形ABCD中,AB∥CD,對角線AC、BD交于點E,點F在邊AB上,連接CF交線段BE于點G,CG2=GE?GD.求證:∠ACF=∠ABD;連接EF,求證:EF?CG=EG?CB.22.(10分)十八大報告首次提出建設生態(tài)文明,建設美麗中國.十九大報告再次明確,到2035年美麗中國目標基本實現(xiàn).森林是人類生存發(fā)展的重要生態(tài)保障,提高森林的數(shù)量和質量對生態(tài)文明建設非常關鍵.截止到2013年,我國已經(jīng)進行了八次森林資源清查,其中全國和北京的森林面積和森林覆蓋率情況如下:表1全國森林面積和森林覆蓋率清查次數(shù)一(1976年)二(1981年)三(1988年)四(1993年)五(1998年)六(2003年)七(2008年)八(2013年)森林面積(萬公頃)122001150125001340015894.0917490.9219545.2220768.73森林覆蓋率12.7%12%12.98%13.92%16.55%18.21%20.36%21.63%表2北京森林面積和森林覆蓋率清查次數(shù)一(1976年)二(1981年)三(1988年)四(1993年)五(1998年)六(2003年)七(2008年)八(2013年)森林面積(萬公頃)33.7437.8852.0558.81森林覆蓋率11.2%8.1%12.08%14.99%18.93%21.26%31.72%35.84%(以上數(shù)據(jù)來源于中國林業(yè)網(wǎng))請根據(jù)以上信息解答下列問題:(1)從第次清查開始,北京的森林覆蓋率超過全國的森林覆蓋率;(2)補全以下北京森林覆蓋率折線統(tǒng)計圖,并在圖中標明相應數(shù)據(jù);(3)第八次清查的全國森林面積20768.73(萬公頃)記為a,全國森林覆蓋率21.63%記為b,到2018年第九次森林資源清查時,如果全國森林覆蓋率達到27.15%,那么全國森林面積可以達到萬公頃(用含a和b的式子表示).23.(12分)某網(wǎng)店銷售甲、乙兩種羽毛球,已知甲種羽毛球每筒的售價比乙種羽毛球多15元,王老師從該網(wǎng)店購買了2筒甲種羽毛球和3筒乙種羽毛球,共花費255元.該網(wǎng)店甲、乙兩種羽毛球每筒的售價各是多少元?根據(jù)消費者需求,該網(wǎng)店決定用不超過8780元購進甲、乙兩種羽毛球共200筒,且甲種羽毛球的數(shù)量大于乙種羽毛球數(shù)量的,已知甲種羽毛球每筒的進價為50元,乙種羽毛球每筒的進價為40元.①若設購進甲種羽毛球m筒,則該網(wǎng)店有哪幾種進貨方案?②若所購進羽毛球均可全部售出,請求出網(wǎng)店所獲利潤W(元)與甲種羽毛球進貨量m(筒)之間的函數(shù)關系式,并說明當m為何值時所獲利潤最大?最大利潤是多少?24.受益于國家支持新能源汽車發(fā)展和“一帶一路”發(fā)展戰(zhàn)略等多重利好因素,我市某汽車零部件生產(chǎn)企業(yè)的利潤逐年提高,據(jù)統(tǒng)計,2014年利潤為2億元,2016年利潤為2.88億元.求該企業(yè)從2014年到2016年利潤的年平均增長率;若2017年保持前兩年利潤的年平均增長率不變,該企業(yè)2017年的利潤能否超過3.4億元?
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
由又AD∥BC,所以故A正確,不符合題意;過D作DM∥BE交AC于N,得到四邊形BMDE是平行四邊形,求出BM=DE=BC,得到CN=NF,根據(jù)線段的垂直平分線的性質可得結論,故B正確,不符合題意;
根據(jù)相似三角形的判定即可求解,故C正確,不符合題意;
由△BAE∽△ADC,得到CD與AD的大小關系,根據(jù)正切函數(shù)可求tan∠CAD的值,故D錯誤,符合題意.【詳解】A.∵AD∥BC,∴△AEF∽△CBF,∴∵∴,故A正確,不符合題意;B.過D作DM∥BE交AC于N,∵DE∥BM,BE∥DM,∴四邊形BMDE是平行四邊形,∴∴BM=CM,∴CN=NF,∵BE⊥AC于點F,DM∥BE,∴DN⊥CF,∴DF=DC,∴∠DCF=∠DFC,故B正確,不符合題意;C.圖中與△AEF相似的三角形有△ACD,△BAF,△CBF,△CAB,△ABE共有5個,故C正確,不符合題意;D.設AD=a,AB=b,由△BAE∽△ADC,有∵tan∠CAD故D錯誤,符合題意.故選:D.【點睛】考查相似三角形的判定,矩形的性質,解直角三角形,掌握相似三角形的判定方法是解題的關鍵.2、A【解析】試題分析:過點C作CE⊥x軸于點E,過點D作DF⊥x軸于點F,如圖所示.設BD=a,則OC=3a.∵△AOB為邊長為1的等邊三角形,∴∠COE=∠DBF=10°,OB=1.在Rt△COE中,∠COE=10°,∠CEO=90°,OC=3a,∴∠OCE=30°,∴OE=a,CE==a,∴點C(a,a).同理,可求出點D的坐標為(1﹣a,a).∵反比例函數(shù)(k≠0)的圖象恰好經(jīng)過點C和點D,∴k=a×a=(1﹣a)×a,∴a=,k=.故選A.3、B【解析】
A、根據(jù)眾數(shù)的定義找出出現(xiàn)次數(shù)最多的數(shù);B、根據(jù)中位數(shù)的定義將這組數(shù)據(jù)從小到大重新排列,求出最中間的2個數(shù)的平均數(shù),即可得出中位數(shù);C、根據(jù)加權平均數(shù)公式代入計算可得;D、根據(jù)方差公式計算即可.【詳解】解:A、由統(tǒng)計表得:眾數(shù)為3,不是8,所以此選項不正確;B、隨機調查了20名學生,所以中位數(shù)是第10個和第11個學生的閱讀小時數(shù),都是3,故中位數(shù)是3,所以此選項正確;C、平均數(shù)=,所以此選項不正確;D、S2=×[(2﹣3.35)2+2(2.5﹣3.35)2+8(3﹣3.35)2+6(3.5﹣3.35)2+3(4﹣3.35)2]==0.2825,所以此選項不正確;故選B.【點睛】本題考查方差;加權平均數(shù);中位數(shù);眾數(shù).4、C【解析】
由三角形內(nèi)角和定理可得∠ACB=80°,由旋轉的性質可得AC=CE,∠ACE=∠ACB=80°,由等腰的性質可得∠CAE=∠AEC=50°.【詳解】∵∠B=70°,∠BAC=30°∴∠ACB=80°∵將△ABC繞點C順時針旋轉得△EDC.∴AC=CE,∠ACE=∠ACB=80°∴∠CAE=∠AEC=50°故選C.【點睛】本題考查了旋轉的性質,等腰三角形的性質,熟練運用旋轉的性質是本題的關鍵.5、B【解析】根據(jù)垂直的定義和同角的余角相等,可由∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,可求得∠CAD=∠BCD,然后在Rt△BCD中cos∠BCD=,可得BC=.故選B.點睛:本題主要考查解直角三角形的應用,熟練掌握同角的余角相等和三角函數(shù)的定義是解題的關鍵.6、B【解析】分析:根據(jù)位似變換的性質計算即可.詳解:點P(m,n)是線段AB上一點,以原點O為位似中心把△AOB放大到原來的兩倍,則點P的對應點的坐標為(m×2,n×2)或(m×(-2),n×(-2)),即(2m,2n)或(-2m,-2n),故選B.點睛:本題考查的是位似變換、坐標與圖形的性質,在平面直角坐標系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應點的坐標的比等于k或-k.7、C【解析】試題分析:二次函數(shù)y=(2x-1)+2即的頂點坐標為(,2)考點:二次函數(shù)點評:本題考查二次函數(shù)的頂點坐標,考生要掌握二次函數(shù)的頂點式與其頂點坐標的關系8、B【解析】解:連接OB,OC.∵AB為圓O的切線,∴∠ABO=90°.在Rt△ABO中,OA=2,∠OAB=30°,∴OB=1,∠AOB=60°.∵BC∥OA,∴∠OBC=∠AOB=60°.又∵OB=OC,∴△BOC為等邊三角形,∴∠BOC=60°,則劣弧BC的弧長為=π.故選B.點睛:此題考查了切線的性質,含30度直角三角形的性質,以及弧長公式,熟練掌握切線的性質是解答本題的關鍵.9、A【解析】【分析】根據(jù)一次函數(shù)性質:中,當k>0時,y隨x的增大而增大;當k<0時,y隨x的增大而減小.由-2<0得,當x12時,y1>y2.【詳解】因為,點A(1,a)和點B(4,b)在直線y=-2x+m上,-2<0,所以,y隨x的增大而減小.因為,1<4,所以,a>b.故選A【點睛】本題考核知識點:一次函數(shù)性質.解題關鍵點:判斷一次函數(shù)中y與x的大小關系,關鍵看k的符號.10、B【解析】試題分析:根據(jù)樣本A,B中數(shù)據(jù)之間的關系,結合眾數(shù),平均數(shù),中位數(shù)和標準差的定義即可得到結論:設樣本A中的數(shù)據(jù)為xi,則樣本B中的數(shù)據(jù)為yi=xi+2,則樣本數(shù)據(jù)B中的眾數(shù)和平均數(shù)以及中位數(shù)和A中的眾數(shù),平均數(shù),中位數(shù)相差2,只有標準差沒有發(fā)生變化.故選B.考點:統(tǒng)計量的選擇.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】
根據(jù)一元二次方程的定義可得:,且,求解即可得出m的值.【詳解】解:由題意得:,且,解得:,且,∴故答案為:1.【點睛】此題主要考查了一元二次方程的定義,關鍵是掌握“未知數(shù)的最高次數(shù)是1”且“二次項的系數(shù)不等于0”.12、1【解析】分析:由圖形可知,內(nèi)部小三角形直角邊是大三角形直角邊平移得到的,故內(nèi)部五個小直角三角形的周長為大直角三角形的周長.詳解:由圖形可以看出:內(nèi)部小三角形直角邊是大三角形直角邊平移得到的,故內(nèi)部五個小直角三角形的周長為AC+BC+AB=1.故答案為1.點睛:本題主要考查了平移的性質,需要注意的是:平移前后圖形的大小、形狀都不改變.13、(2a+1)(2a﹣1)【解析】
有兩項,都能寫成完全平方數(shù)的形式,并且符號相反,可用平方差公式展開.【詳解】4a2﹣1=(2a+1)(2a﹣1).故答案為:(2a+1)(2a-1).【點睛】此題考查多項式因式分解,根據(jù)多項式的特點選擇適合的分解方法是解題的關鍵.14、1【解析】設點C坐標為(x,y),作CD⊥BO′交邊BO′于點D,∵tan∠BAO=2,∴=2,∵S△ABO=?AO?BO=4,∴AO=2,BO=4,∵△ABO≌△A'O'B,∴AO=A′O′=2,BO=BO′=4,∵點C為斜邊A′B的中點,CD⊥BO′,∴CD=A′O′=1,BD=BO′=2,∴x=BO﹣CD=4﹣1=3,y=BD=2,∴k=x·y=3×2=1.故答案為1.15、8【解析】
在Rt△ABC中,cosB=,AB=10,可求得BC,再利用勾股定理即可求AC的長.【詳解】∵Rt△ABC中,∠C=90°,AB=10∴cosB=,得BC=6由勾股定理得BC=故答案為8.【點睛】此題主要考查銳角三角函數(shù)在直角三形中的應用及勾股定理.16、(-)cm2【解析】S陰影=S扇形-S△OBD=52-×5×5=.故答案是:.三、解答題(共8題,共72分)17、(1)CF與BD位置關系是垂直,理由見解析;(2)AB≠AC時,CF⊥BD的結論成立,理由見解析;(3)見解析【解析】
(1)由∠ACB=15°,AB=AC,得∠ABD=∠ACB=15°;可得∠BAC=90°,由正方形ADEF,可得∠DAF=90°,AD=AF,∠DAF=∠DAC+∠CAF;∠BAC=∠BAD+∠DAC;得∠CAF=∠BAD.可證△DAB≌△FAC(SAS),得∠ACF=∠ABD=15°,得∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.
(2)過點A作AG⊥AC交BC于點G,可得出AC=AG,易證:△GAD≌△CAF,所以∠ACF=∠AGD=15°,∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.
(3)若正方形ADEF的邊DE所在直線與線段CF所在直線相交于點P,設AC=1,BC=3,CD=x,求線段CP的長.考慮點D的位置,分兩種情況去解答.①點D在線段BC上運動,已知∠BCA=15°,可求出AQ=CQ=1.即DQ=1-x,易證△AQD∽△DCP,再根據(jù)相似三角形的性質求解問題.②點D在線段BC延長線上運動時,由∠BCA=15°,可求出AQ=CQ=1,則DQ=1+x.過A作AQ⊥BC交CB延長線于點Q,則△AGD∽△ACF,得CF⊥BD,由△AQD∽△DCP,得再根據(jù)相似三角形的性質求解問題.【詳解】(1)CF與BD位置關系是垂直;證明如下:∵AB=AC,∠ACB=15°,∴∠ABC=15°.由正方形ADEF得AD=AF,∵∠DAF=∠BAC=90°,∴∠DAB=∠FAC,∴△DAB≌△FAC(SAS),∴∠ACF=∠ABD.∴∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.(2)AB≠AC時,CF⊥BD的結論成立.理由是:過點A作GA⊥AC交BC于點G,∵∠ACB=15°,∴∠AGD=15°,∴AC=AG,同理可證:△GAD≌△CAF∴∠ACF=∠AGD=15°,∠BCF=∠ACB+∠ACF=90°,即CF⊥BD.(3)過點A作AQ⊥BC交CB的延長線于點Q,①點D在線段BC上運動時,∵∠BCA=15°,可求出AQ=CQ=1.∴DQ=1﹣x,△AQD∽△DCP,∴,∴,∴.②點D在線段BC延長線上運動時,∵∠BCA=15°,∴AQ=CQ=1,∴DQ=1+x.過A作AQ⊥BC,∴∠Q=∠FAD=90°,∵∠C′AF=∠C′CD=90°,∠AC′F=∠CC′D,∴∠ADQ=∠AFC′,則△AQD∽△AC′F.∴CF⊥BD,∴△AQD∽△DCP,∴,∴,∴.【點睛】綜合性題型,解題關鍵是靈活運用所學全等、相似、正方形等知識點.18、見解析【解析】
根據(jù)角平分線的性質和直角三角形性質求∠BAF=∠ACG.進一步證明△ABF≌△CAG,從而證明BF=AG.【詳解】證明:∵∠BAC=90°,,AB=AC,∴∠B=∠ACB=45°,又∵AG平分∠BAC,∴∠GAC=∠BAC=45°,又∵∠BAC=90°,AE⊥CD,∴∠BAF+∠ADE=90°,∠ACG+∠ADE=90°,∴∠BAF=∠ACG.又∵AB=CA,∴∴△ABF≌△CAG(ASA),∴BF=AG【點睛】此題重點考查學生對三角形全等證明的理解,熟練掌握兩三角形全等的證明是解題的關鍵.19、(1)證明見解析;(2).【解析】
(1)連接OD,由OD=OB,利用等邊對等角得到一對角相等,再由已知角相等,等量代換得到∠1=∠3,求出∠4為90°,即可得證;
(2)設圓的半徑為r,利用銳角三角函數(shù)定義求出AB的長,再利用勾股定理列出關于r的方程,求出方程的解即可得到結果.【詳解】(1)證明:連接,,,,,在中,,,,則為圓的切線;(2)設圓的半徑為,在中,,根據(jù)勾股定理得:,,在中,,,根據(jù)勾股定理得:,在中,,即,解得:.【點睛】此題考查了切線的判定與性質,以及勾股定理,熟練掌握切線的判定與性質是解本題的關鍵.20、1【解析】試題分析:原式第一項括號中兩項通分并利用同分母分式的減法法則計算,同時利用除法法則變形,約分后,兩項通分并利用同分母分式的減法法則計算得到最簡結果,已知方程變形后代入計算即可求出值.試題解析:原式=∵x2?x?1=0,∴x2=x+1,則原式=1.21、(1)證明見解析;(2)證明見解析.【解析】試題分析:(1)先根據(jù)CG2=GE?GD得出,再由∠CGD=∠EGC可知△GCD∽△GEC,∠GDC=∠GCE.根據(jù)AB∥CD得出∠ABD=∠BDC,故可得出結論;(2)先根據(jù)∠ABD=∠ACF,∠BGF=∠CGE得出△BGF∽△CGE,故.再由∠FGE=∠BGC得出△FGE∽△BGC,進而可得出結論.試題解析:(1)∵CG2=GE?GD,∴.又∵∠CGD=∠EGC,∴△GCD∽△GEC,∴∠GDC=∠GCE.∵AB∥CD,∴∠ABD=∠BDC,∴∠ACF=∠ABD.(2)∵∠ABD=∠ACF,∠BGF=∠CGE,∴△BGF∽△CGE,∴.又∵∠FGE=∠BGC,∴△FGE∽△BGC,∴,∴FE?CG=EG?CB.考點:相似三角形的判定與性質.22、(1)四;(2)見解析;(3).【解析】
(1)比較兩個折線統(tǒng)計圖,找出滿足題意的調查次數(shù)即可;(2)描出第四次與第五次北京森林覆蓋率,補全折線統(tǒng)計圖即可;(3)根據(jù)第八次全面森林面積除以森林覆蓋率求出全國總面積,除以第九次的森林覆蓋率,即可得到結果.【詳解】解:(1)觀察兩折線統(tǒng)計圖比較得:從第四次清查開始,北京的森林覆蓋率超過全國的森林覆蓋率;故答案為四;(2)補全折線統(tǒng)計圖,如圖所示:(3)根據(jù)題意得:×27.15%=,則全國森林面積可以達到萬公頃,故答案為.【點睛】此題考查了折線統(tǒng)計圖,弄清題中的數(shù)據(jù)是解本題的關鍵.23、(1)該網(wǎng)店甲種羽毛球每筒的售價為60元,乙種羽毛球每筒的售價為45元;(2)①進貨方案有3種,具體見解析;②當m=78時,所獲利潤最大,最大利潤為1390元.【解析】【分析】(1)設甲種羽毛球每筒的售價為x元,乙種羽毛球每筒的售價為y元
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025標準蔬菜買賣合同范本
- 2025施工現(xiàn)場環(huán)境職業(yè)健康安全管理合同書
- 2025年度教育機構辦學許可證轉讓及人才培養(yǎng)合作合同3篇
- 2025年度農(nóng)村小型水庫防洪減災能力提升承包合同
- 2025年度國土綠化行動-鄉(xiāng)土樹苗采購與生態(tài)修復合同
- 二零二五年度排水溝清理與排水設施智能化改造協(xié)議3篇
- 二零二五年度創(chuàng)意辦公場地租賃與設計合同3篇
- 二零二五年度農(nóng)機租賃與農(nóng)業(yè)廢棄物綜合利用合作合同2篇
- 2025工廠生產(chǎn)承包合同樣本
- 2025年度公廁節(jié)能照明系統(tǒng)承包施工合同范本3篇
- ISO 56001-2024《創(chuàng)新管理體系-要求》專業(yè)解讀與應用實踐指導材料之7:“5領導作用-5.1領導作用和承諾”(雷澤佳編制-2025B0)
- 2024年度通信設備維修服務合同范本3篇
- 一次顯著的性能優(yōu)化
- 《中國近現(xiàn)代史綱要(2023版)》課后習題答案合集匯編
- 醫(yī)院關于成立安全生產(chǎn)領導小組的通知
- 【施工方案】空調百葉施工方案
- ppt模板熱烈歡迎領導蒞臨指導模板課件(15頁PPT)
- 領域驅動設計1
- 腦卒中的腸內(nèi)營養(yǎng)支持
- 電業(yè)安全工作規(guī)程——電氣部分電業(yè)安全工作規(guī)程
- 基于穩(wěn)態(tài)模型的轉差頻率控制的交流調速系統(tǒng)的仿真與設計
評論
0/150
提交評論