植物營養(yǎng)元素的土壤化學3-土壤中的C(上)_第1頁
植物營養(yǎng)元素的土壤化學3-土壤中的C(上)_第2頁
植物營養(yǎng)元素的土壤化學3-土壤中的C(上)_第3頁
植物營養(yǎng)元素的土壤化學3-土壤中的C(上)_第4頁
植物營養(yǎng)元素的土壤化學3-土壤中的C(上)_第5頁
已閱讀5頁,還剩94頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

第二章土壤碳素循環(huán)及調(diào)控Chapter2CarboncyclesinSoilLowcarboneconomyGHGs=greenhousegasesIPCC=IntergovernmentalPanelonClimateChange

(政府間氣候變化專業(yè)委員會)“哥本哈根氣候會議”Fig.Deviationsfromrecentexponentialincreasesinfossilfuelburning(Bacastow&Keeling,1974)Theindustrialrevolution,whichstartedaround1750,drivenbycheapandeasyaccesstomodernenergythroughfossilfuelcombustion,ledtomassproductionofmodernamenitiesatlowcost.Indeedallavailedamenitiesbyindustrializedsocietiesarebasedonfossilfuelderivedenergy.Thus,themoderncivilizationcanbeappropriatelytermed“theCarbonCivilization”ortheC-Era(Lal,2007),ascomparedwiththehistorichydriccivilizations,whichthrivedinthevalleysofTigris,Euphrates,Nile,Indus,Huangetc.Indeed,theworldenergyconsumptionincreased40timesbetween1850and2005.TheatmosphericconcentrationofCO2hasincreasedfrom280ppmvsincethelate1700stoabout380ppmvin2006,ispresentlyincreasingattherateof1.8ppmvyr?1or0.47%yr?1(WMO,2006.)政府間氣候變化專門委員會(IPCC)第三次評估報告(2001)二十世紀全球平均氣溫上升0.60.2C;從1861年以來,二十世紀九十年代是最熱的10年,其中,1998年是最熱的一年;在過去的一千年中,二十世紀是最熱的一個世紀;從1950年到1993年,陸地夜間日平均氣溫每10年升高約0.2C,白天升高約0.1C。海面氣溫升高約為陸地的一半.海平面上升;降水分布發(fā)生變化;沙漠化加??;自然災害發(fā)生頻繁增加。全球變暖的后果?HumanpopulationSizeResourceuseHumanenterprisesAgricultureIndustryRecreationInternationalcommerceLandtransformation

LandclearingForestryGrazingIntensificationBioticadditionsandlosses

InvasionHuntingFishingGlobalbiogeochemistry

CarbonNitrogenWaterSyntheticchemicalsOtherelementsClimatechange

EnhancedgreenhouseAerosolsLandcoverLossofbiologicaldiversity

ExtinctionofspeciesandpopulationsLossofecosystems改進能源結構提高能源效率植樹種草,增加生態(tài)系統(tǒng)對CO2的吸收如何減少溫室效應氣體的排放?Csequestration(碳固定)CarbonsequestrationimpliesthenetremovalofCO2fromtheatmosphereintolong-livedpoolsofC,suchasterrestrialandgeologic.Inotherwords,itiscapturingandsecurelystoringCbybioticphotosynthesisandabioticinjectionintogeologicstrataoroceanprocesses.LalR.SoilSci.Soc.Am.J.2007,71:1425–1437Carbonsequestration1997年12月,面對環(huán)境惡化,氣候變暖,在日本京都舉行的聯(lián)合國氣候大會通過了《京都議定書》,目標是在2008年至2012年間,將發(fā)達國家CO2等6種溫室氣體的排放量在1990年的基礎上平均削減5.2%。為了使議定書真正發(fā)揮作用,協(xié)議規(guī)定,只有在占1990年全球溫室氣體排放量55%以上的至少55個國家批準后才能生效。京都議定書(Kyotoprotocol)Theindustrialemissionsofcarbon(C)inChinaareabout1Pgyr-1,secondonlytotheUnitedStatesestimatedat1.84Pgyr-1for2000.Becauseofthedifferencesinpopulation,however,thepercapitaemissionis0.08Tgper100000inhabitantsinChinacomparedwith0.55Tgper100000inhabitantsintheUnitedStates(NET,1998).Withitsrapidlyincreasingeconomy,however,ChinamaysurpasstheUnitedStatesastheworld’slargestemitterofCby2020.LalR.LandDegrad.Develop.13:469–478(2002)我國2001年的工業(yè)CO2排放為1Pg/yr,僅次于美國(1.84Pg/yr),預計在2005年會超過美國,達到2Pg/yr,我國面臨著減排的巨大壓力。這是一個關系國家環(huán)境外交和農(nóng)業(yè)可持續(xù)發(fā)展的食物安全與環(huán)境安全保障的重大問題。黃耀.第四紀研究.2006按照IPCC第2次評估報告提供的全球增溫潛勢數(shù)據(jù)計算,1994年中國溫室氣體總排放量為36.50×108tCO2當量,其中CO2,CH4和N2O分別占73.1%,19.7%和7.2%。能源活動是中國CO2排放的主要來源,占90.95%;農(nóng)業(yè)活動和能源活動是CH4排放的主要來源,分別占50.15%和27.33%;農(nóng)業(yè)活動是N2O排放的主要來源,占92.4%。About20%oftheglobalemissionpresentlycomefromlandusechange(IPCC,2001)Agriculture’sContributiontoClimateChange–SternReviewAgriculture=14%ofglobalGHGsLanduse(deforestation)=18%ofglobalGHGsSource:SternReview:theEconomicsofClimateChangeAgriculture’sContributiontoClimateChange–SternReview38%38%13%11%Globalsourcesofnon-CO2emissionsfromtheagriculturesector(2000)Source:SternReview:theEconomicsofClimateChangeHillelD.2008Agricultureaccountsforasizableshareofnon-CO2emissions,includinganestimated47%ofCH4andasmuchas84%ofN2O.UKAgriculture-SomeKeyFactsOnly0.5%ofGDP(agri-foodsector7%)1.7%ofemployment(agri-food14%)Manages70%ofEngland’sland(80%ofruralland),withhugebenefitsforlandscape,biodiversityandaccessBut…contributes7%oftheUK’sGHGemissions(37%ofmethane,63%ofnitrousoxide)…andMajorityofnitrateemissionstowaterandammoniaemissionstoairJeremyEppel,DeputyDirector,Food&FarmingGroup,Defra全球氣候變化簡史不同的聲音.“氣候變化問題的非主流思考:事實與邏輯”,科學時報,2009年8月11“哥本哈根鬧劇后的沉思”,科學時報,2010-02-11氣候問題的“郵件門”

(2009年11月)英國東英吉利大學氣候研究中心上千封電子郵件和3000多份有關氣候變化的文件被曝光,這些文件顯示:這些氣象學家利用各國政府對氣候變化問題的關心,用一些不實數(shù)據(jù)制造氣候變暖的假象,營造恐慌心理,然后從政府或其他機構手中騙得了更多的科研經(jīng)費。氣候問題的“冰川門”事件IPCC在2007年發(fā)布的第四次評估報告中寫道“喜馬拉雅冰川的消融速度超過了世界其他地區(qū)的冰川,如果全球變暖的速度持續(xù)下去,喜馬拉雅冰川在2035年甚至更早前消失的可能性非常高”。客觀對待IPCC的報告美國250余名科學家聯(lián)名上書呼吁不要指責IPCC荷蘭250余名科學家聯(lián)名問題與對策:我國已成為全球最大的溫室效應氣體排放國,面臨著減排的巨大壓力。丁仲禮,段曉男,葛全勝,張志強.2050年大氣CO2濃度控制:各國排放權計算.中國科學,D輯,2009,39(8):1009-1027文章提出了“人均累計排放指標”的概念,以體現(xiàn)“共同而有區(qū)別的責任”原則和公平正義準則。設定2050年前將大氣CO2濃度控制在470ppmv的目標,以1900年為時間起點,對各國過去(1900-2005年)人均累計排放量、應得排放配額以及今后(2006-2050年)的排放配額做了逐年計算.全球碳循環(huán)概況土壤碳庫在全球碳循環(huán)中的作用土壤碳的不同組分及其特性土壤碳庫的調(diào)節(jié)TableDistributionofCinsomeofthemaincompartmentsintheearth(Delwiche)CompartmentAmountofC,×1012kgAtmosphere700Soilorganicmatter(to2mdepth)2500Landlifeforms480Marinehumus3000Oceanlifeforms50Dissolvedcarbonate-bicarbonateinoceans3840Coalandpetroleum1×104

Sediments6×107

StevensonFJ,1986(1)全球碳分布全球碳循環(huán)概況FigThecarboncycle(Numbersarestorageas1015gorfluxesas1015gperyear)Ecology,ManuelCM,2002為了維持全球碳平衡,其焦點不是各個庫的碳貯存總量,而是每年碳的去處和動態(tài)變化問題?!霸础迸c“匯”

(sourceandsink)把釋放二氧化碳的庫稱為“源”,吸收二氧化碳的庫稱為“匯”。PaulEA,2007(2)全球碳循環(huán)

SoilOceanBiotaAtmosphereTerrestrialphotosynthesisRivertransportoforganicmatterandcarbonatesRespirationCarbonateinputCO2exchangeLitterandrootinputCalcificationMarinerespirationMarinephotosynthesisTheshort-termCcycle人為因素對碳循環(huán)的干擾作用(單位Pg/年)大氣土地海洋沉積物礦質(zhì)有機碳碳酸鹽地質(zhì)庫5.4礦質(zhì)燃料燃燒5.3水泥生產(chǎn)0.1土地利用變化1.7土地吸收1.9海洋吸收1.9PostWM,etal.,BioScience?2004,54(10)Fig.1.IllustrationofthemainstoresandflowsofCinacropland,showingthreepoolsofsoilCforsimplicity,thoughrecognizingthatsoilCspansacontinuumofforms.(Janzen,2006,SBB)2.土壤碳庫在全球碳轉化及循環(huán)中的地位LalR.Science,2004Theglobalsoilcarbon(C)poolof2500gigatons(Gt)includesabout1550Gtofsoilorganiccarbon(SOC)and950Gtofsoilinorganiccarbon(SIC).ThesoilCpoolis3.3timesthesizeoftheatmosphericpool(760Gt)and4.5timesthesizeofthebioticpool(560Gt).(1)土壤碳庫的意義AtmosphericCpool(760Pg)TerrestrialCpool2860PgSOC=1550Pg(to1mdepth)SIC=750PgBiota=560PgFigure1.Cycleof

Cin

terrestrialecosystemandtheatmosphere.PhotosynthesisPlantandsoilrespirationLalR.Science.2004,304土壤碳庫的穩(wěn)定、增長或釋放與大氣庫的變化有重要的關系,土壤能否增加碳儲存是關乎陸地生態(tài)系統(tǒng)凈碳匯飽和問題的重要理論基礎,這一問題已成為土壤與全球變化研究的重點和熱點科學問題。SequestrationofCinsoils

isoftenseenasa‘win-win’proposition;itnotonlyremovesexcessCO2fromtheair,butalsoimprovessoilsbyaugmentingorganicmatter,anenergyandnutrientsourceforbiota.LalR.SoilSci.Soc.Am.J.2007,71:1425–1437LalR.SoilSci.Soc.Am.J.2007,71:1425–1437土壤的“Csinks”、“Csequestration”、“Cstorage”、“Cstabilization”及“Cstoringcapacity”(2)土壤碳貯量(Cstorage)土壤碳貯量的計算?土壤碳貯量=土壤容重×土壤有機碳含量×土壤體積Soilorganiccarbon=1550PgSoilinorganiccarbon=750PgYu,D.,etal.,RegionalpatternsofsoilorganiccarbonstocksinChina.JournalofEnvironmentalManagement(2006),Yu,D.,etal.,RegionalpatternsofsoilorganiccarbonstocksinChina.JournalofEnvironmentalManagement(2006),SoilsinChinacoveranareaof9.281×106km2intotal,withatotalSOCstockof89.14Pg(1Pg=1015g)andameanSOCdensityof96.0tC/ha.中國是世界上平均土壤碳密度較低的國家。全球全土碳密度平均為121t/hm2,我國全土平均有機碳密度的報道值介于80~105t/hm2,均遠遠低于世界平均值。表中國和歐洲表層土壤有機碳密度比較(tC/ha)土地利用歐洲中國土地總計70.852.0耕地53.037.0潘根興,趙其國.地球科學進展.2005不同土地利用方式對土壤剖面碳貯量的影響TableLand-useeffectsondensityoforganiccarbon(kg/m2)in416soilprofilesofeasternChina(adaptedfromCai,1995)HorizonNaturalvegetationFuelforestUplandfieldsPaddyfieldsA5.402.171.312.40B6.582.680.921.44C2.271.671.642.94Total14.256.523.876.78LandDegradation&Development,2002,13:469-478植物體組成及分解轉化特性土壤有機碳的組分及特性土壤有機碳穩(wěn)定性的機理3.土壤碳的不同組分及其特性PlantlitterastheprinciplesourceofsoilorganicmatterformationPlantsarethemainsourceofcarbontosoilsthroughtissueresiduesorviarootexudatesandsymbioticfungi.陳興麗等表1黃土高原幾種植物殘體的化學成分植物殘體有機碳CTOC(g·kg-1)全氮NTotalN(g·kg-1)C/NRatios木質(zhì)素(%)喬木A榆樹422.5825.3616.6625.20B小葉楊414.449.0245.9730.89C刺槐437.7314.9229.3327.78灌木D檸條466.8530.9515.0829.59E沙棘464.7029.7115.6427.14F山桃458.5328.2916.2125.76草本G長芒草499.469.8650.6727.54H白羊草432.696.6165.4928.61I沙打旺427.9327.0115.8424.10J紫花苜蓿464.9832.7814.1924.47(C6H10O5)n+nH2OnC6H12O6C6H12O6+6O26CO2+6H2O+能量在通氣不良的情況下,可形成中間產(chǎn)物有機酸(丁酸)和甲烷、氫氣C6H12O6CH3CH2CH2COOH+2H2+2CO2+能量4H2+CO2CH4+2H2O碳水化合物的礦化有機物質(zhì)的礦化腐殖物質(zhì)形成的生物學示意圖

植物殘體

在微生物作用下轉化

多酚

氨基化合物

木質(zhì)素分解產(chǎn)物

類木質(zhì)素

腐殖物質(zhì)

1234Firststage:StevensonFJ,1986StagesinthemicrobialdecompositionDecayofeasilydegradablesubstances.PartialconversiontoCO2andbodytissueSecondstage:Thirdstage:Fourthandsuccessivestage:Celluloseandothercarbohydratesutilizedwithfurtherweightreduction.Formationofnewbodytissue.Partofpreviousbiomassmineralized.Furtherdecreaseincellulose.Initiationoflignindecomposition.Furtherdecreaseinbiomass.Furthercycling.Forplantresidues,aboutone-thirdofthecarbonwillremaininthesoilattheendofthegrowingseason.陳興麗等圖1黃土高原不同植物殘體碳的礦化率C/NA榆樹16.66B小葉楊45.97C刺槐29.33D檸條15.08E沙棘15.64F山桃16.21G長芒草50.67H白羊草65.49I沙打旺15.84J紫花苜蓿14.19Fig.Influenceofleaftoughnessandnitrogencontentondecomposition(Gallardo&Merino,1993)Nitrogenmostoftencontrolstherateoforganicmatterdecomposition.(C/Nratio)圖1土壤植物生態(tài)系統(tǒng)中的碳、氮素轉化過程示意圖不同C/N比的植物殘體等土壤微生物量部分穩(wěn)定的有機氮

穩(wěn)定的腐殖質(zhì)態(tài)氮NH3,NO3-NH3,NO3-腐殖化作用施用肥料作物吸收CO2等釋放土壤中氮、碳協(xié)調(diào)是關鍵!有機物施入土壤的去向(1年后):有機殘體(100)CO2(60-80%)土壤生物體(3-8%)非腐殖物質(zhì)(多糖、有機酸等)(3-8%)腐殖物質(zhì)(10-30%)腐殖質(zhì)SoilsinourEnvironment.1995TableThedecompositionofthedifferentcomponentsinthemixtureofresiduesfrompineandoakOriginallitterPortionofwhole(%)Percentagelostbydecompositionby:1styear2ndyear5thyear10thyearSugars1599100--Cellulose2090100--Hemicelluloses157592100-Lignins40507497100Waxes525437795Phenols510204370Wholelittermatters55.179.687.198.2StevensonFJ.CyclesofSoil.1986,pp-31TableCarbonretainedfrom14C-labeledplantmaterialappliedtofieldsoilsLocationTypeCarbonretained(%)RefereceRothmasted,EnglandRyegrasstopsandrootApproximately33%offirstyearirrespectiveofsoiltypeorplantmaterialJenkinsonWestGermanyWheatstrawandchaff31%afterfirstyearforfallowandcroppedsoilIAEAAustriaMaize47%afterfirstyearwhenappliedinAugustand33%whenappliedinOctoberIAEASaskatchewan,CanadaWheatstraw35-45%afterfirstgrowingseasonShieldsandPaulColorado,USABluegramaa.herbageb.Roots43-46%after412days63-74%after412daysNyhanNigeriaRyegrass20%afterfirstyearand14%aftertwoyears.Jenkonson&Ayanaba通氣性狀況對土壤有機質(zhì)含量的影響通氣淹水土壤黏粒含量對有機質(zhì)含量的影響水分狀況對植物體分解的影響FigDecompositionofFraxinusleavesatwetteranddriersites(Gallardo&Merino,1993)Science,1997,277:504-509PaulEA,2007SolubleinpolarsolventsNon-hydrolyzable/solubleinpolarsolventsHydrolyzableSoilorganicmatter(SOM)NotrecalcitrantCelluloseHemicellulosesProteinsRecalcitrantCutinsSuberinsHighly-recalcitrantLigninsTanninsCutansSuberansComponentsofSOM?土壤腐殖物質(zhì)腐殖物質(zhì)分組----胡敏素殘渣胡敏酸褐色沉淀富里酸黃色溶液酸化溶液----HCl土壤樣品NaOH浸提表土壤有機碳的不同組分及特性土壤有機碳組分占土壤碳比例(%)周轉時間舉例微生物量碳2-8幾個月-幾年土壤微生物量碳及微生物代謝產(chǎn)物周轉慢的碳40-5520-50年穩(wěn)定的微生物代謝產(chǎn)物,難分解的植物殘體惰性碳40-50400-2000年土壤腐殖質(zhì)LabilepoolStabilizedpoolParticulateorganicmatter(POM)MicrobialbiomassCSolubleCPotentialmineralizableCHumicsubstancesThelabilefractionconsistsofmaterialintransitionbetweenfreshplantresiduesandstabilizedorganicmatterParticulateorganicmattercanbeseparatedfromsoilsbytwodistinctmethodsresultingintwodifferentterms:lightfraction(LF)organicmatterandsand-sizedfraction(SSF)organicmatter.floatonheavyliquidsofdensitiestypicallybetween1.5and2.0g/cm3.(NaI,1.7g/cm3)LForganicmatterSSForganicmatterdefinedasorganicmatterassociatedwithsand-sizedorganicmatter(>20μmdiameterforEuropeanand>53μmdiameterforAmericanparticlesizeclassificationsystems).Itisisolatedbysievingadispersedsoil.HaynesRJ.AdvancesinAgronomy,2005MicrobialbiomassFigSchematicdiagramshowingtherelationshipbetweenvariousorganicmatterfractionsSolubleorganicmatterParticulateorganicmatterExtractableorganicmatterRootturnoverCropresiduesPotentiallymineralizableorganicmatterAdsorbedorganicmatterHumicmaterialTableTypicalquantitiesofdifferentorganicmatterfractionsinsoilsOrganicfractionTypicalquantitiesTotalorganicCandNOrganicC=7-60gC/kgParticulateorganicmatterLF=2-18%oforganicC,1-16%oftotalNSSF=20-45%oforganicC,13-40%oftotalNMicrobialbiomass1-5%oforganicCand1-6%oftotalNSolubleorganicmatterAbout0.05-0.40%oforganicCandNExtractableorganicCandNVariableamountoforganicC(1-40%)dependingontheextractantPotentiallymineralizableCandNAbout1-5%oforganicCandtotalNHaynesRJ.AdvancesinAgronomy,2005Meanresidencetime(MRT)ofsoilorganicmatterThetermmeanresidencetimehasbeenusedtoexpresstheresultsof14Cmeasurementsfortheaverageageofmodernhumus.14CdatingmethodStevensonFJ.CyclesofSoil.1986,pp-31Theformularelatingtoageto14CactivityiswhereAisthenumberofradioactivenucleiremainingaftertimeintervalt,A0isthenumberofradioactivenucleipresentatzerotime,tistimeoragesincezerotime,andt1/2isthehalf-lifeofradioactivenuclide.TableMeanresidencetime(MRT)fordifferentorganicmatterfractionsofaChernozemicblacksoilStevensonFJ.CyclesofSoil.1986,pp-31ComponentMRT,yearsUnfractionatedsoil870±50Acidextractofsoil325±60Fulvicacid495±60Humicacidtotalsample1235±60acidhydrolysate25±50nonhydrolyzable1400±60Humintotalsample1140±50acidhydrolysate465±50nonhydrolyzable1230±60RecentanalyticalandexperimentaladvanceshavedemonstratedthatmolecularstructurealonedoesnotcontrolSOMstability:infact,environmentalandbiologicalcontrolspredominate.StevensonFJ.CyclesofSoil.1986,pp-31Wearguethatthepersistenceoforganicmatterinsoilislargelyduetocomplexinteractionsbetweenorganicmatteranditsenvironment,suchastheinterdependenceofcompoundchemistry,reactivemineralsurfaces,climate,wateravailability,soilacidity,soilredoxstateandthepresenceofpotentialdegradersintheimmediatemicroenvironment.SchmidtMW,etal.2011.Persistenceofsoilorganicmatterasanecosystemproperty.NATURE,478:49-56InorganicCinsoil(SIC)Intheformofcalciumandmagnesiumcarbonates,estimatedtototalsome695to748billiontons,presentmainlyinthesoilsofsemiaridandaridareas.Thoughnotnearlyaslabileasorganiccarbon,SICcanbesolubilizedbyacidandissubjecttoleaching.Somecarbondioxidealsodissolvesingroundwater,andmaybereleasedtotheatmospherebyeffervescenceas,forexample,whengroundwaterispumpedupandusedforirrigation(DanielHill.SoilintheEnvironment,2008).塿土剖面有機碳及無機碳含量圖加入碳酸鈣及碳酸鎂對土壤培養(yǎng)過程中CO2釋放的影響(董燕婕,2010)碳酸鈣碳酸鎂CO2emissionfromsoilOrganicCpoolinsoilInorganicCpoolinsoilBioticabiotic×Sterilizer:HgCl2UsingsolidHgCl2asasterilizertosterilizetheCO2productionfrombioticprocess.Fig5aEffectofCaCO3andHgCl2additionsonCO2emissionfromsoilpH=7.4pH=7.9ForMgCO3Fig5bTheeffectofMgCO3andHgCl2additionsonsoilCO2emissionHowcanwedifferentiatethecontributionofinorganiccarbonandorganiccarbontoCO2release?Fig.1.IllustrationofthemainstoresandflowsofCinacropland,showingthreepoolsofsoilCforsimplicity,thoughrecognizingthatsoilCspansacontinuumofforms.(Janzen,2006,SBB)4.土壤碳庫的調(diào)節(jié)Soilorganiccarboncontentisafunctionofthebalancebetweentherateoforganicmatterinputtothesoil(duetonetprimaryproductivityofactivevegetation)andtherateoforganicmatterdecay.Theratesoftheseprocessesdifferinspaceandtime,aswellasintheirsensitivitiestovaryingtemperatureandmoistureregimesresultingfrommanagementandclimatechanges.Cinsoil=f(climate,topography,vegetationandorganisms,parentmaterial,ageortime)Theamountoforganicmatterinsoildependsontheinputoforganicmaterial,itsrateofdecomposition,therateatwhichexistingsoilorganicmatterismineralized,soiltexture,andclimate.HaynesRJ.AdvancesinAgronomy,2005LabileCFigAschematicdiagramoftheCcycleinagriculturalsoilsStabilizedCPlantCCO2HarvestedCLitterdecompositionDecompositionNetprimaryproductionAtmosphericCpool(760Pg)TerrestrialCpool2860PgSOC=1550PgSIC=750PgBiota=560PgFigure1.AnthropogenicactivitiesaffectingCemissionfromtheterrestrialtotheatmosphericpool.ThedirectionofthearrowindicatesthefluxofCfromonepooltoanother.Photosynthesisandplant/soilrespirationarenaturalactivities.AllothersareanthropogenicactivitiesthatcauseemissionofCO2andothergasesfromtheterrestrialecosystemtotheatmosphere.Themagnitudeofemissioncausedbyallanthropogenicactivitiesisnotknown.(Lal.NutrientCyclinginAgroecosystems70:103–116,2004.)PhotosynthesisPlantandsoilrespirationAnthropogenicactivitiesDeforestation(1.6±0.8Pg)ConversionofnaturalintoagriculturalecosystemsBiomassburningSoiltillageDrainageofwetlandSoilerosion(1.1PgCy-1)CultivationoforganicsoilGlobalterrestrialecosystemsabsorbedcarbonatarateof1–4Pg/yrduringthe1980sand1990s,offsetting10–60percentofthefossil-fuelemissions.ShilongPiao,JingyunFang,etal.2009.ThecarbonbalanceofterrestrialecosystemsinChina.Nature,458:1009-1014.潘根興.氣候變化研究進展

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論