版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023年高考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知展開式中第三項的二項式系數(shù)與第四項的二項式系數(shù)相等,,若,則的值為()A.1 B.-1 C.8l D.-812.已知非零向量滿足,若夾角的余弦值為,且,則實數(shù)的值為()A. B. C.或 D.3.在中,D為的中點,E為上靠近點B的三等分點,且,相交于點P,則()A. B.C. D.4.已知復數(shù)(為虛數(shù)單位),則下列說法正確的是()A.的虛部為 B.復數(shù)在復平面內(nèi)對應的點位于第三象限C.的共軛復數(shù) D.5.已知集合,,則的真子集個數(shù)為()A.1個 B.2個 C.3個 D.4個6.下列四個圖象可能是函數(shù)圖象的是()A. B. C. D.7.已知是空間中兩個不同的平面,是空間中兩條不同的直線,則下列說法正確的是()A.若,且,則B.若,且,則C.若,且,則D.若,且,則8.連接雙曲線及的4個頂點的四邊形面積為,連接4個焦點的四邊形的面積為,則當取得最大值時,雙曲線的離心率為()A. B. C. D.9.下列函數(shù)中,既是偶函數(shù)又在區(qū)間上單調遞增的是()A. B. C. D.10.如圖示,三棱錐的底面是等腰直角三角形,,且,,則與面所成角的正弦值等于()A. B. C. D.11.已知函數(shù),則()A. B. C. D.12.《易·系辭上》有“河出圖,洛出書”之說,河圖、洛書是中華文化,陰陽術數(shù)之源,其中河圖的排列結構是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中,如圖,白圈為陽數(shù),黑點為陰數(shù),若從陰數(shù)和陽數(shù)中各取一數(shù),則其差的絕對值為5的概率為A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,,若,則______.14.設雙曲線的左焦點為,過點且傾斜角為45°的直線與雙曲線的兩條漸近線順次交于,兩點若,則的離心率為________.15.設函數(shù),若對于任意的,∈[2,,≠,不等式恒成立,則實數(shù)a的取值范圍是.16.如圖所示,在正三棱柱中,是的中點,,則異面直線與所成的角為____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)當(為自然對數(shù)的底數(shù))時,求函數(shù)的極值;(2)為的導函數(shù),當,時,求證:.18.(12分)己知等差數(shù)列的公差,,且,,成等比數(shù)列.(1)求使不等式成立的最大自然數(shù)n;(2)記數(shù)列的前n項和為,求證:.19.(12分)已知的內(nèi)角,,的對邊分別為,,,.(1)若,證明:.(2)若,,求的面積.20.(12分)某保險公司給年齡在歲的民眾提供某種疾病的一年期醫(yī)療保險,現(xiàn)從名參保人員中隨機抽取名作為樣本進行分析,按年齡段分成了五組,其頻率分布直方圖如下圖所示;參保年齡與每人每年應交納的保費如下表所示.據(jù)統(tǒng)計,該公司每年為這一萬名參保人員支出的各種費用為一百萬元.年齡(單位:歲)保費(單位:元)(1)用樣本的頻率分布估計總體分布,為使公司不虧本,求精確到整數(shù)時的最小值;(2)經(jīng)調查,年齡在之間的老人每人中有人患該項疾病(以此頻率作為概率).該病的治療費為元,如果參保,保險公司補貼治療費元.某老人年齡歲,若購買該項保險(取中的).針對此疾病所支付的費用為元;若沒有購買該項保險,針對此疾病所支付的費用為元.試比較和的期望值大小,并判斷該老人購買此項保險是否劃算?21.(12分)已知函數(shù).(Ⅰ)求在點處的切線方程;(Ⅱ)求證:在上存在唯一的極大值;(Ⅲ)直接寫出函數(shù)在上的零點個數(shù).22.(10分)在國家“大眾創(chuàng)業(yè),萬眾創(chuàng)新”戰(zhàn)略下,某企業(yè)決定加大對某種產(chǎn)品的研發(fā)投入.為了對新研發(fā)的產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格試銷,得到一組檢測數(shù)據(jù)如表所示:試銷價格(元)產(chǎn)品銷量(件)已知變量且有線性負相關關系,現(xiàn)有甲、乙、丙三位同學通過計算求得回歸直線方程分別為:甲;乙;丙,其中有且僅有一位同學的計算結果是正確的.(1)試判斷誰的計算結果正確?(2)若由線性回歸方程得到的估計數(shù)據(jù)與檢測數(shù)據(jù)的誤差不超過,則稱該檢測數(shù)據(jù)是“理想數(shù)據(jù)”,現(xiàn)從檢測數(shù)據(jù)中隨機抽取個,求“理想數(shù)據(jù)”的個數(shù)的分布列和數(shù)學期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
根據(jù)二項式系數(shù)的性質,可求得,再通過賦值求得以及結果即可.【詳解】因為展開式中第三項的二項式系數(shù)與第四項的二項式系數(shù)相等,故可得,令,故可得,又因為,令,則,解得令,則.故選:B.【點睛】本題考查二項式系數(shù)的性質,以及通過賦值法求系數(shù)之和,屬綜合基礎題.2、D【解析】
根據(jù)向量垂直則數(shù)量積為零,結合以及夾角的余弦值,即可求得參數(shù)值.【詳解】依題意,得,即.將代入可得,,解得(舍去).故選:D.【點睛】本題考查向量數(shù)量積的應用,涉及由向量垂直求參數(shù)值,屬基礎題.3、B【解析】
設,則,,由B,P,D三點共線,C,P,E三點共線,可知,,解得即可得出結果.【詳解】設,則,,因為B,P,D三點共線,C,P,E三點共線,所以,,所以,.故選:B.【點睛】本題考查了平面向量基本定理和向量共線定理的簡單應用,屬于基礎題.4、D【解析】
利用的周期性先將復數(shù)化簡為即可得到答案.【詳解】因為,,,所以的周期為4,故,故的虛部為2,A錯誤;在復平面內(nèi)對應的點為,在第二象限,B錯誤;的共軛復數(shù)為,C錯誤;,D正確.故選:D.【點睛】本題考查復數(shù)的四則運算,涉及到復數(shù)的虛部、共軛復數(shù)、復數(shù)的幾何意義、復數(shù)的模等知識,是一道基礎題.5、C【解析】
求出的元素,再確定其真子集個數(shù).【詳解】由,解得或,∴中有兩個元素,因此它的真子集有3個.故選:C.【點睛】本題考查集合的子集個數(shù)問題,解題時可先確定交集中集合的元素個數(shù),解題關鍵是對集合元素的認識,本題中集合都是曲線上的點集.6、C【解析】
首先求出函數(shù)的定義域,其函數(shù)圖象可由的圖象沿軸向左平移1個單位而得到,因為為奇函數(shù),即可得到函數(shù)圖象關于對稱,即可排除A、D,再根據(jù)時函數(shù)值,排除B,即可得解.【詳解】∵的定義域為,其圖象可由的圖象沿軸向左平移1個單位而得到,∵為奇函數(shù),圖象關于原點對稱,∴的圖象關于點成中心對稱.可排除A、D項.當時,,∴B項不正確.故選:C【點睛】本題考查函數(shù)的性質與識圖能力,一般根據(jù)四個選擇項來判斷對應的函數(shù)性質,即可排除三個不符的選項,屬于中檔題.7、D【解析】
利用線面平行和垂直的判定定理和性質定理,對選項做出判斷,舉出反例排除.【詳解】解:對于,當,且,則與的位置關系不定,故錯;對于,當時,不能判定,故錯;對于,若,且,則與的位置關系不定,故錯;對于,由可得,又,則故正確.故選:.【點睛】本題考查空間線面位置關系.判斷線面位置位置關系利用好線面平行和垂直的判定定理和性質定理.一般可借助正方體模型,以正方體為主線直觀感知并準確判斷.8、D【解析】
先求出四個頂點、四個焦點的坐標,四個頂點構成一個菱形,求出菱形的面積,四個焦點構成正方形,求出其面積,利用重要不等式求得取得最大值時有,從而求得其離心率.【詳解】雙曲線與互為共軛雙曲線,四個頂點的坐標為,四個焦點的坐標為,四個頂點形成的四邊形的面積,四個焦點連線形成的四邊形的面積,所以,當取得最大值時有,,離心率,故選:D.【點睛】該題考查的是有關雙曲線的離心率的問題,涉及到的知識點有共軛雙曲線的頂點,焦點,菱形面積公式,重要不等式求最值,等軸雙曲線的離心率,屬于簡單題目.9、C【解析】
結合基本初等函數(shù)的奇偶性及單調性,結合各選項進行判斷即可.【詳解】A:為非奇非偶函數(shù),不符合題意;B:在上不單調,不符合題意;C:為偶函數(shù),且在上單調遞增,符合題意;D:為非奇非偶函數(shù),不符合題意.故選:C.【點睛】本小題主要考查函數(shù)的單調性和奇偶性,屬于基礎題.10、A【解析】
首先找出與面所成角,根據(jù)所成角所在三角形利用余弦定理求出所成角的余弦值,再根據(jù)同角三角函數(shù)關系求出所成角的正弦值.【詳解】由題知是等腰直角三角形且,是等邊三角形,設中點為,連接,,可知,,同時易知,,所以面,故即為與面所成角,有,故.故選:A.【點睛】本題主要考查了空間幾何題中線面夾角的計算,屬于基礎題.11、A【解析】
根據(jù)分段函數(shù)解析式,先求得的值,再求得的值.【詳解】依題意,.故選:A【點睛】本小題主要考查根據(jù)分段函數(shù)解析式求函數(shù)值,屬于基礎題.12、A【解析】
陽數(shù):,陰數(shù):,然后分析陰數(shù)和陽數(shù)差的絕對值為5的情況數(shù),最后計算相應概率.【詳解】因為陽數(shù):,陰數(shù):,所以從陰數(shù)和陽數(shù)中各取一數(shù)差的絕對值有:個,滿足差的絕對值為5的有:共個,則.故選:A.【點睛】本題考查實際背景下古典概型的計算,難度一般.古典概型的概率計算公式:.二、填空題:本題共4小題,每小題5分,共20分。13、-1【解析】
由向量垂直得向量的數(shù)量積為0,根據(jù)數(shù)量積的坐標運算可得結論.【詳解】由已知,∵,∴,.故答案為:-1.【點睛】本題考查向量垂直的坐標運算.掌握向量垂直與數(shù)量積的關系是解題關鍵.14、【解析】
設直線的方程為,與聯(lián)立得到A點坐標,由得,,代入可得,即得解.【詳解】由題意,直線的方程為,與聯(lián)立得,,由得,,從而,即,從而離心率.故答案為:【點睛】本題考查了雙曲線的離心率,考查了學生綜合分析,轉化劃歸,數(shù)學運算的能力,屬于中檔題.15、【解析】試題分析:由題意得函數(shù)在[2,上單調遞增,當時在[2,上單調遞增;當時在上單調遞增;在上單調遞減,因此實數(shù)a的取值范圍是考點:函數(shù)單調性16、【解析】
要求兩條異面直線所成的角,需要通過見中點找中點的方法,找出邊的中點,連接出中位線,得到平行,從而得到兩條異面直線所成的角,得到角以后,再在三角形中求出角.【詳解】取的中點E,連AE,,易證,∴為異面直線與所成角,設等邊三角形邊長為,易算得∴在∴故答案為【點睛】本題考查異面直線所成的角,本題是一個典型的異面直線所成的角的問題,解答時也是應用典型的見中點找中點的方法,注意求角的三個環(huán)節(jié),一畫,二證,三求.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)極大值,極小值;(2)詳見解析.【解析】
首先確定函數(shù)的定義域和;(1)當時,根據(jù)的正負可確定單調性,進而確定極值點,代入可求得極值;(2)通過分析法可將問題轉化為證明,設,令,利用導數(shù)可證得,進而得到結論.【詳解】由題意得:定義域為,,(1)當時,,當和時,;當時,,在,上單調遞增,在上單調遞減,極大值為,極小值為.(2)要證:,即證:,即證:,化簡可得:.,,即證:,設,令,則,在上單調遞增,,則由,從而有:.【點睛】本題考查導數(shù)在研究函數(shù)中的應用,涉及到函數(shù)極值的求解、利用導數(shù)證明不等式的問題;本題不等式證明的關鍵是能夠將多個變量的問題轉化為一個變量的問題,通過構造函數(shù)的方式將問題轉化為函數(shù)最值的求解問題.18、(1);(2)證明見解析【解析】
(1)根據(jù),,成等比數(shù)列,有,結合公差,,求得通項,再解不等式.(2)根據(jù)(1),用裂項相消法求和,然后研究其單調性即可.【詳解】(1)由題意,可知,即,∴.又,,∴,∴.∴,∴,故滿足題意的最大自然數(shù)為.(2),∴...從而當時,單調遞增,且,當時,單調遞增,且,所以,由,知不等式成立.【點睛】本題主要考查等差數(shù)列的基本運算和裂項相消法求和,還考查了運算求解的能力,屬于中檔題.19、(1)見解析(2)【解析】
(1)由余弦定理及已知等式得出關系,再由正弦定理可得結論;(2)由余弦定理和已知條件解得,然后由面積公式計算.【詳解】解:(1)由余弦定理得,由得到,由正弦定理得.因為,,所以.(2)由題意及余弦定理可知,①由得,即,②聯(lián)立①②解得,.所以.【點睛】本題考查利用正余弦定理解三角形.考查三角形面積公式,由已知條件本題主要是應用余弦定理求出邊.解題時要注意對條件的分析,確定選用的公式.20、(1)30;(2),比較劃算.【解析】
(1)由頻率和為1求出,根據(jù)的值求出保費的平均值,然后解一元一次不等式即可求出結果,最后取近似值即可;(2)分別計算參保與不參保時的期望,,比較大小即可.【詳解】解:(1)由,解得.保險公司每年收取的保費為:∴要使公司不虧本,則,即解得∴.(2)①若該老人購買了此項保險,則的取值為∴(元).②若該老人沒有購買此項保險,則的取值為.∴(元).∴年齡為的該老人購買此項保險比較劃算.【點睛】本題考查學生利用相關統(tǒng)計圖表知識處理實際問題的能力,掌握頻率分布直方
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 磷石膏綜合開發(fā)利用項目可行性研究報告完整立項報告
- 2021-2026年中國自行車租賃市場供需現(xiàn)狀及投資戰(zhàn)略研究報告
- 2025年中國牙齒止痛藥行業(yè)市場深度分析及投資策略咨詢報告
- 2025廣告公司平面設計合同
- 水生動物罐頭項目可行性研究報告
- 年產(chǎn)20萬噸礦泉水建設項目可行性研究報告
- 2025年市政工程竣工總結自評報告
- 湖北尾氣污染治理裝備項目可行性研究報告范文模板
- 2025關于古董買賣合同范本
- 2025正規(guī)個人借款合同范本3
- 原料藥FDA現(xiàn)場GMP符合性要求與檢查實踐課件
- 2022閥門制造作業(yè)指導書
- 科技創(chuàng)新社團活動教案課程
- 部編版語文六年級上冊作文總復習課件
- 氨堿法純堿生產(chǎn)工藝概述
- 基礎化工行業(yè)深度:電解液新型鋰鹽材料之雙氟磺酰亞胺鋰(LiFSI)市場潛力可觀新型鋰鹽LiFSI國產(chǎn)化進程加速
- 年產(chǎn)10000噸一次性自然降解環(huán)保紙漿模塑餐具自動化生產(chǎn)線技改項目環(huán)境影響報告表
- 實戰(zhàn)銷售培訓講座(共98頁).ppt
- 測控電路第7章信號細分與辨向電路
- 哈爾濱工業(yè)大學信紙模版
- 氨的飽和蒸汽壓表
評論
0/150
提交評論