2022-2023學年浙江東陽中考數(shù)學適應性模擬試題含解析_第1頁
2022-2023學年浙江東陽中考數(shù)學適應性模擬試題含解析_第2頁
2022-2023學年浙江東陽中考數(shù)學適應性模擬試題含解析_第3頁
2022-2023學年浙江東陽中考數(shù)學適應性模擬試題含解析_第4頁
2022-2023學年浙江東陽中考數(shù)學適應性模擬試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數(shù)學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,四邊形ABCE內(nèi)接于⊙O,∠DCE=50°,則∠BOE=()A.100° B.50° C.70° D.130°2.如圖,在正方形ABCD中,AB=,P為對角線AC上的動點,PQ⊥AC交折線A﹣D﹣C于點Q,設AP=x,△APQ的面積為y,則y與x的函數(shù)圖象正確的是()A. B.C. D.3.某工廠第二季度的產(chǎn)值比第一季度的產(chǎn)值增長了x%,第三季度的產(chǎn)值又比第二季度的產(chǎn)值增長了x%,則第三季度的產(chǎn)值比第一季度的產(chǎn)值增長了()A.2x% B.1+2x% C.(1+x%)x% D.(2+x%)x%4.下列計算結果等于0的是()A. B. C. D.5.把一枚六個面編號分別為1,2,3,4,5,6的質(zhì)地均勻的正方體骰子先后投擲2次,若兩個正面朝上的編號分別為m,n,則二次函數(shù)y=xA.512B.49C.176.如圖,是半圓圓的直徑,的兩邊分別交半圓于,則為的中點,已知,則()A. B. C. D.7.“鳳鳴”文學社在學校舉行的圖書共享儀式上互贈圖書,每個同學都把自己的圖書向本組其他成員贈送一本,某組共互贈了210本圖書,如果設該組共有x名同學,那么依題意,可列出的方程是()A.x(x+1)=210 B.x(x﹣1)=210C.2x(x﹣1)=210 D.x(x﹣1)=2108.已知關于x的一元二次方程有兩個相等的實根,則k的值為()A. B. C.2或3 D.或9.如圖,在4×4的正方形網(wǎng)格中,每個小正方形的邊長都為1,△AOB的三個頂點都在格點上,現(xiàn)將△AOB繞點O逆時針旋轉90°后得到對應的△COD,則點A經(jīng)過的路徑弧AC的長為()A. B.π C.2π D.3π10.如圖所示的工件,其俯視圖是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,△ABC的兩條高AD,BE相交于點F,請?zhí)砑右粋€條件,使得△ADC≌△BEC(不添加其他字母及輔助線),你添加的條件是_____.12.小明為了統(tǒng)計自己家的月平均用電量,做了如下記錄并制成了表格,通過計算分析小明得出一個結論:小明家的月平均用電量為330千瓦時.請判斷小明得到的結論是否合理并且說明理由______.月份六月七月八月用電量(千瓦時)290340360月平均用電量(千瓦時)33013.關于的方程有兩個不相等的實數(shù)根,那么的取值范圍是__________.14.如圖,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以點C為圓心,CB長為半徑作弧,交AB于點D;再分別以點B和點D為圓心,大于BD的長為半徑作弧,兩弧相交于點E,作射線CE交AB于點F,則AF的長為_____.15.如圖,設△ABC的兩邊AC與BC之和為a,M是AB的中點,MC=MA=5,則a的取值范圍是_____.16.如圖,在平面直角坐標系中,二次函數(shù)y=ax2+c(a≠0)的圖象過正方形ABOC的三個頂點A,B,C,則ac的值是________.三、解答題(共8題,共72分)17.(8分)如圖,在△ABC中,點D在邊BC上,聯(lián)結AD,∠ADB=∠CDE,DE交邊AC于點E,DE交BA延長線于點F,且AD2=DE?DF.(1)求證:△BFD∽△CAD;(2)求證:BF?DE=AB?AD.18.(8分)如圖,AB是⊙O的直徑,點E是上的一點,∠DBC=∠BED.(1)求證:BC是⊙O的切線;(2)已知AD=3,CD=2,求BC的長.19.(8分)如圖,在平面直角坐標系中,等邊三角形ABC的頂點B與原點O重合,點C在x軸上,點C坐標為(6,0),等邊三角形ABC的三邊上有三個動點D、E、F(不考慮與A、B、C重合),點D從A向B運動,點E從B向C運動,點F從C向A運動,三點同時運動,到終點結束,且速度均為1cm/s,設運動的時間為ts,解答下列問題:(1)求證:如圖①,不論t如何變化,△DEF始終為等邊三角形.(2)如圖②過點E作EQ∥AB,交AC于點Q,設△AEQ的面積為S,求S與t的函數(shù)關系式及t為何值時△AEQ的面積最大?求出這個最大值.(3)在(2)的條件下,當△AEQ的面積最大時,平面內(nèi)是否存在一點P,使A、D、Q、P構成的四邊形是菱形,若存在請直接寫出P坐標,若不存在請說明理由?20.(8分)(1)解方程:=0;(2)解不等式組,并把所得解集表示在數(shù)軸上.21.(8分)為響應國家的“一帶一路”經(jīng)濟發(fā)展戰(zhàn)略,樹立品牌意識,我市質(zhì)檢部門對A、B、C、D四個廠家生產(chǎn)的同種型號的零件共2000件進行合格率檢測,通過檢測得出C廠家的合格率為95%,并根據(jù)檢測數(shù)據(jù)繪制了如圖1、圖2兩幅不完整的統(tǒng)計圖.抽查D廠家的零件為件,扇形統(tǒng)計圖中D廠家對應的圓心角為;抽查C廠家的合格零件為件,并將圖1補充完整;通過計算說明合格率排在前兩名的是哪兩個廠家;若要從A、B、C、D四個廠家中,隨機抽取兩個廠家參加德國工業(yè)產(chǎn)品博覽會,請用“列表法”或“畫樹形圖”的方法求出(3)中兩個廠家同時被選中的概率.22.(10分)如圖,在四邊形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,AB=,點E,F(xiàn)同時從B點出發(fā),沿射線BC向右勻速移動,已知點F的移動速度是點E移動速度的2倍,以EF為一邊在CB的上方作等邊△EFG,設E點移動距離為x(0<x<6).(1)∠DCB=度,當點G在四邊形ABCD的邊上時,x=;(2)在點E,F(xiàn)的移動過程中,點G始終在BD或BD的延長線上運動,求點G在線段BD的中點時x的值;(3)當2<x<6時,求△EFG與四邊形ABCD重疊部分面積y與x之間的函數(shù)關系式,當x取何值時,y有最大值?并求出y的最大值.23.(12分)計算﹣14﹣24.如圖,已知在中,,是的平分線.(1)作一個使它經(jīng)過兩點,且圓心在邊上;(不寫作法,保留作圖痕跡)(2)判斷直線與的位置關系,并說明理由.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】

根據(jù)圓內(nèi)接四邊形的任意一個外角等于它的內(nèi)對角求出∠A,根據(jù)圓周角定理計算即可.【詳解】四邊形ABCE內(nèi)接于⊙O,,由圓周角定理可得,,故選:A.【點睛】本題考查的知識點是圓的內(nèi)接四邊形性質(zhì),解題關鍵是熟記圓內(nèi)接四邊形的任意一個外角等于它的內(nèi)對角(就是和它相鄰的內(nèi)角的對角).2、B【解析】∵在正方形ABCD中,AB=,∴AC=4,AD=DC=,∠DAP=∠DCA=45o,當點Q在AD上時,PA=PQ,∴DP=AP=x,∴S=;當點Q在DC上時,PC=PQCP=4-x,∴S=;所以該函數(shù)圖象前半部分是拋物線開口向上,后半部分也為拋物線開口向下,故選B.【點睛】本題考查動點問題的函數(shù)圖象,有一定難度,解題關鍵是注意點Q在AP、DC上這兩種情況.3、D【解析】設第一季度的原產(chǎn)值為a,則第二季度的產(chǎn)值為,第三季度的產(chǎn)值為,則則第三季度的產(chǎn)值比第一季度的產(chǎn)值增長了故選D.4、A【解析】

各項計算得到結果,即可作出判斷.【詳解】解:A、原式=0,符合題意;

B、原式=-1+(-1)=-2,不符合題意;

C、原式=-1,不符合題意;

D、原式=-1,不符合題意,

故選:A.【點睛】本題考查了有理數(shù)的運算,熟練掌握運算法則是解本題的關鍵.5、C【解析】分析:本題可先列出出現(xiàn)的點數(shù)的情況,因為二次圖象開口向上,要使圖象與x軸有兩個不同的交點,則最低點要小于0,即4n-m2<0,再把m、n的值一一代入檢驗,看是否滿足.最后把滿足的個數(shù)除以擲骰子可能出現(xiàn)的點數(shù)的總個數(shù)即可.解答:解:擲骰子有6×6=36種情況.根據(jù)題意有:4n-m2<0,因此滿足的點有:n=1,m=3,4,5,6,n=2,m=3,4,5,6,n=3,m=4,5,6,n=4,m=5,6,n=5,m=5,6,n=6,m=5,6,共有17種,故概率為:17÷36=1736故選C.點評:本題考查的是概率的公式和二次函數(shù)的圖象問題.要注意畫出圖形再進行判斷,找出滿足條件的點.6、C【解析】

連接AE,只要證明△ABC是等腰三角形,AC=AB即可解決問題.【詳解】解:如圖,連接AE,

∵AB是直徑,

∴∠AEB=90°,即AE⊥BC,

∵EB=EC,

∴AB=AC,

∴∠C=∠B,

∵∠BAC=50°,

∴∠C=(180°-50°)=65°,

故選:C.【點睛】本題考查了圓周角定理、等腰三角形的判定和性質(zhì)、線段的垂直平分線的性質(zhì)定理等知識,解題的關鍵是學會添加常用輔助線,靈活運用所學知識解決問題.7、B【解析】

設全組共有x名同學,那么每名同學送出的圖書是(x?1)本;則總共送出的圖書為x(x?1);又知實際互贈了210本圖書,則x(x?1)=210.故選:B.8、A【解析】

根據(jù)方程有兩個相等的實數(shù)根結合根的判別式即可得出關于k的方程,解之即可得出結論.【詳解】∵方程有兩個相等的實根,∴△=k2-4×2×3=k2-24=0,解得:k=.故選A.【點睛】本題考查了根的判別式,熟練掌握“當△=0時,方程有兩個相等的兩個實數(shù)根”是解題的關鍵.9、A【解析】

根據(jù)旋轉的性質(zhì)和弧長公式解答即可.【詳解】解:∵將△AOB繞點O逆時針旋轉90°后得到對應的△COD,∴∠AOC=90°,∵OC=3,∴點A經(jīng)過的路徑弧AC的長==,故選:A.【點睛】此題考查弧長計算,關鍵是根據(jù)旋轉的性質(zhì)和弧長公式解答.10、B【解析】試題分析:從上邊看是一個同心圓,外圓是實線,內(nèi)圓是虛線,故選B.點睛:本題考查了簡單組合體的三視圖,從上邊看得到的圖形是俯視圖.看得見部分的輪廓線要畫成實線,看不見部分的輪廓線要畫成虛線.二、填空題(本大題共6個小題,每小題3分,共18分)11、AC=BC.【解析】分析:添加AC=BC,根據(jù)三角形高的定義可得∠ADC=∠BEC=90°,再證明∠EBC=∠DAC,然后再添加AC=BC可利用AAS判定△ADC≌△BEC.詳解:添加AC=BC,∵△ABC的兩條高AD,BE,∴∠ADC=∠BEC=90°,∴∠DAC+∠C=90°,∠EBC+∠C=90°,∴∠EBC=∠DAC,在△ADC和△BEC中∠BEC=∴△ADC≌△BEC(AAS),故答案為:AC=BC.點睛:此題主要考查了三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應相等時,角必須是兩邊的夾角.12、不合理,樣本數(shù)據(jù)不具有代表性【解析】

根據(jù)表中所取的樣本不具有代表性即可得到結論.【詳解】不合理,樣本數(shù)據(jù)不具有代表性(例:夏季高峰用電量大不能代表年平均用電量).故答案為:不合理,樣本數(shù)據(jù)不具有代表性(例:夏季高峰用電量大不能代表年平均用電量).【點睛】本題考查了統(tǒng)計表,認真分析表中數(shù)據(jù)是解題的關鍵.13、且【解析】分析:根據(jù)一元二次方程的定義以及根的判別式的意義可得△=4-12m>1且m≠1,求出m的取值范圍即可.詳解:∵一元二次方程mx2-2x+3=1有兩個不相等的實數(shù)根,∴△>1且m≠1,∴4-12m>1且m≠1,∴m<且m≠1,故答案為:m<且m≠1.點睛:本題考查了一元二次方程ax2+bx+c=1(a≠1,a,b,c為常數(shù))根的判別式△=b2-4ac.當△>1,方程有兩個不相等的實數(shù)根;當△=1,方程有兩個相等的實數(shù)根;當△<1,方程沒有實數(shù)根.也考查了一元二次方程的定義.14、1;【解析】分析:根據(jù)輔助線做法得出CF⊥AB,然后根據(jù)含有30°角的直角三角形得出AB和BF的長度,從而得出AF的長度.詳解:∵根據(jù)作圖法則可得:CF⊥AB,∵∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=8,∵∠CFB=90°,∠B=10°,∴BF=BC=2,∴AF=AB-BF=8-2=1.點睛:本題主要考查的是含有30°角的直角三角形的性質(zhì),屬于基礎題型.解題的關鍵就是根據(jù)作圖法則得出直角三角形.15、10<a≤10.【解析】

根據(jù)題設知三角形ABC是直角三角形,由勾股定理求得AB的長度及由三角形的三邊關系求得a的取值范圍;然后根據(jù)題意列出二元二次方程組,通過方程組求得xy的值,再把該值依據(jù)根與系數(shù)的關系置于一元二次方程z2-az+=0中,最后由根的判別式求得a的取值范圍.【詳解】∵M是AB的中點,MC=MA=5,∴△ABC為直角三角形,AB=10;∴a=AC+BC>AB=10;令AC=x、BC=y.∴,∴xy=,∴x、y是一元二次方程z2-az+=0的兩個實根,∴△=a2-4×≥0,即a≤10.綜上所述,a的取值范圍是10<a≤10.故答案為10<a≤10.【點睛】本題綜合考查了勾股定理、直角三角形斜邊上的中線及根的判別式.此題的綜合性比較強,解題時,還利用了一元二次方程的根與系數(shù)的關系、根的判別式的知識點.16、-1.【解析】

設正方形的對角線OA長為1m,根據(jù)正方形的性質(zhì)則可得出B、C坐標,代入二次函數(shù)y=ax1+c中,即可求出a和c,從而求積.【詳解】設正方形的對角線OA長為1m,則B(﹣m,m),C(m,m),A(0,1m);把A,C的坐標代入解析式可得:c=1m①,am1+c=m②,①代入②得:am1+1m=m,解得:a=-,則ac=-1m=-1.考點:二次函數(shù)綜合題.三、解答題(共8題,共72分)17、見解析【解析】試題分析:(1),,可得∽,從而得,再根據(jù)∠BDF=∠CDA即可證;(2)由∽,可得,從而可得,再由∽,可得從而得,繼而可得,得到.試題解析:(1)∵,∴,∵,∴∽,∴,又∵∠ADB=∠CDE,∴∠ADB+∠ADF=∠CDE+∠ADF,即∠BDF=∠CDA,∴∽;(2)∵∽,∴,∵,∴,∵∽,∴,∴,∴,∴.【點睛】本題考查了相似三角形的性質(zhì)與判定,能結合圖形以及已知條件靈活選擇恰當?shù)姆椒ㄟM行證明是關鍵.18、(1)證明見解析(2)BC=【解析】

(1)AB是⊙O的直徑,得∠ADB=90°,從而得出∠BAD=∠DBC,即∠ABC=90°,即可證明BC是⊙O的切線;(2)可證明△ABC∽△BDC,則,即可得出BC=.【詳解】(1)∵AB是⊙O的切直徑,∴∠ADB=90°,又∵∠BAD=∠BED,∠BED=∠DBC,∴∠BAD=∠DBC,∴∠BAD+∠ABD=∠DBC+∠ABD=90°,∴∠ABC=90°,∴BC是⊙O的切線;(2)解:∵∠BAD=∠DBC,∠C=∠C,∴△ABC∽△BDC,∴,即BC2=AC?CD=(AD+CD)?CD=10,∴BC=.考點:1.切線的判定;2.相似三角形的判定和性質(zhì).19、(1)證明見解析;(2)當t=3時,△AEQ的面積最大為cm2;(3)(3,0)或(6,3)或(0,3)【解析】

(1)由三角形ABC為等邊三角形,以及AD=BE=CF,進而得出三角形ADF與三角形CFE與三角形BED全等,利用全等三角形對應邊相等得到BF=DF=DE,即可得證;(2)先表示出三角形AEC面積,根據(jù)EQ與AB平行,得到三角形CEQ與三角形ABC相似,利用相似三角形面積比等于相似比的平方表示出三角形CEQ面積,進而表示出AEQ面積,利用二次函數(shù)的性質(zhì)求出面積最大值,并求出此時Q的坐標即可;(3)當△AEQ的面積最大時,D、E、F都是中點,分兩種情形討論即可解決問題;【詳解】(1)如圖①中,∵C(6,0),∴BC=6在等邊三角形ABC中,AB=BC=AC=6,∠A=∠B=∠C=60°,由題意知,當0<t<6時,AD=BE=CF=t,∴BD=CE=AF=6﹣t,∴△ADF≌△CFE≌△BED(SAS),∴EF=DF=DE,∴△DEF是等邊三角形,∴不論t如何變化,△DEF始終為等邊三角形;(2)如圖②中,作AH⊥BC于H,則AH=AB?sin60°=3,∴S△AEC=×3×(6﹣t)=,∵EQ∥AB,∴△CEQ∽△ABC,∴=()2=,即S△CEQ=S△ABC=×9=,∴S△AEQ=S△AEC﹣S△CEQ=﹣=﹣(t﹣3)2+,∵a=﹣<0,∴拋物線開口向下,有最大值,∴當t=3時,△AEQ的面積最大為cm2,(3)如圖③中,由(2)知,E點為BC的中點,線段EQ為△ABC的中位線,當AD為菱形的邊時,可得P1(3,0),P3(6,3),當AD為對角線時,P2(0,3),綜上所述,滿足條件的點P坐標為(3,0)或(6,3)或(0,3).【點睛】本題考查四邊形綜合題、等邊三角形的性質(zhì)和判定、菱形的判定和性質(zhì)、二次函數(shù)的性質(zhì)等知識,解題的關鍵是學會構建二次函數(shù)解決最值問題,學會用分類討論的思想思考問題,屬于中考壓軸題.20、(1)x=;(2)x>3;數(shù)軸見解析;【解析】

(1)先把分式方程轉化成整式方程,求出方程的解,再進行檢驗即可;(2)先求出每個不等式的解集,再求出不等式組的解集即可.【詳解】解:(1)方程兩邊都乘以(1﹣2x)(x+2)得:x+2﹣(1﹣2x)=0,解得:檢驗:當時,(1﹣2x)(x+2)≠0,所以是原方程的解,所以原方程的解是;(2),∵解不等式①得:x>1,解不等式②得:x>3,∴不等式組的解集為x>3,在數(shù)軸上表示為:.【點睛】本題考查了解分式方程和解一元一次不等式組、在數(shù)軸上表示不等式組的解集等知識點,能把分式方程轉化成整式方程是解(1)的關鍵,能根據(jù)不等式的解集得出不等式組的解集是解(2)的關鍵.21、(1)500,90°;(2)380;(3)合格率排在前兩名的是C、D兩個廠家;(4)P(選中C、D)=.【解析】試題分析:(1)計算出D廠的零件比例,則D廠的零件數(shù)=總數(shù)×所占比例,D廠家對應的圓心角為360°×所占比例;(2)C廠的零件數(shù)=總數(shù)×所占比例;(3)計算出各廠的合格率后,進一步比較得出答案即可;(4)利用樹狀圖法列舉出所有可能的結果,然后利用概率公式即可求解.試題解析:(1)D廠的零件比例=1-20%-20%-35%=25%,D廠的零件數(shù)=2000×25%=500件;D廠家對應的圓心角為360°×25%=90°;(2)C廠的零件數(shù)=2000×20%=400件,C廠的合格零件數(shù)=400×95%=380件,如圖:(3)A廠家合格率=630÷(2000×35%)=90%,B廠家合格率=370÷(2000×20%)=92.5%,C廠家合格率=95%,D廠家合格率470÷500=94%,合格率排在前兩名的是C、D兩個廠家;(4)根據(jù)題意畫樹形圖如下:共有12種情況,選中C、D的有2種,則P(選中C、D)==.考點:1.條形統(tǒng)計圖;2.扇形統(tǒng)計圖;3.樹狀圖法.22、(1)30;2;(2)x=1;(3)當x=時,y最大=;【解析】

(1)如圖1中,作DH⊥BC于H,則四邊形ABHD是矩形.AD=BH=3,BC=6,CH=BC﹣BH=3,當?shù)冗吶切巍鱁GF的高=時,點G在AD上,此時x=2;(2)根據(jù)勾股定理求出的長度,根據(jù)三角函數(shù),求出∠ADB=30°,根據(jù)中點的定義得出根據(jù)等邊三角形的性質(zhì)得到,即可求出x的值;

(3)圖2,圖3三種情形解決問題.①當2<x<3時,如圖2中,點E、F在線段BC上,△EFG與四邊形ABCD重疊部分為四邊形EFNM;②當3≤x<6時,如圖3中,點E在線段BC上,點F在射線BC上,重疊部分是△ECP;【詳解】(1)作DH⊥BC于H,則四邊形ABHD是矩形.∵AD=BH=3,BC=6,∴CH=BC﹣BH=3,在Rt△DHC中,CH

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論