




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
APPLIEDECONOMETRICS
Lecture1-IdentificationDefiningIdentificationExperimentsNaturalExperimentsInstrumentalvariablesEconometricIdentificationWHATISIDENTIFICATION?GraduateandprofessionaleconomicsmainlyconcernedwithidentificationinempiricalworkConceptofunderstandingwhatisthecausalrelationshipbehindempiricalresults:ThisisessentialforlearningfromempiricalresearchTime-seriesexample:InterestratesandGDPCross-sectionexample:Management&ProductivityWHATISDRIVINGTHISRELATIONSHIP?Correlation=0.233REASONSFORCORRELATIONImaginevariablesYtandXtarecorrelated:Therecanbethreereasonsforthis,whicharenotmutuallyexclusive:Cause:ChangesinXtdrivechangesinYtReverseCause:ChangesinYtdrivechangesinXtCorrelatedvariable:ChangesinZtdrivesXtandYtWHATISDRIVINGTHISRELATIONSHIP?SOHOWDOWEGETIDENTIFICATIONFourbroadapproachesforidentificationExperiments–yougeneratethevariationNaturalExperiments–youknowwhatgeneratedthevariationInstrumentalvariables–youhaveavariablethatcanprovideyouvariationEconometricIdentification–yourelyon(testable)econometricassumptionsforidentificationDefiningIdentificationExperimentsNaturalExperimentsInstrumentalvariablesEconometricIdentificationEXPERIMENTS(1)ExperimentsaretotallystandardinScience&MedicineForexample:Setupatreatmentandcontrolgroupforanewdrug,makingsurethesearecomparable(orrandomlyselected)EnsurethesamplesizesarelargeenoughtoobtainstatisticalsignificanceEnsuretheexperimentisunbiased–i.e.thedrugandtheplaceboareassimilaraspossibleRuntheexperimentEXPERIMENTS(2)EconomistsliketousethelanguageofScienceForexampletheUKconsideredintroducinganEducationMaintenanceAllowance,topaykidstostayonatschool.Butwanttotestfirsttoseeifthiswouldthiswork.SetupatreatmentandcontrolregionstomatchtheseincharacteristicsSelectenoughregionstogetlargesamplesizesObserveagentsactionstoevaluateimpact(ratherthanselfreportedoutcomes)RuntheexperimentEXPERIMENTS(3)Experimentsarerareineconomicsbecausetheyareexpensive,althoughtheybecomingmorepopular:Typicalareasforrunningexperimentsinclude:Developmenteconomics–cheapertorunexperimentsinthethirdWorld(watersupplyormanagementpractices)Consumereconomics–smallstakesexperimentsthatareeasytoadminister(creditcards)Individualbusinessapplications–firmscanfinancethese(retailstorelayout)Butsomefieldswillneverhaveexperiment–forexamplemacroeconomicsDefiningIdentificationExperimentsNaturalExperimentsInstrumentalvariablesEconometricIdentificationNATURALEXPERIMENTS(1)Naturalexperimentsarewherefortunatesituationscreategoodunderlyingidentification:Typicallyseveralapproaches:Taxe.g.ResponseofR&Dtothecostofcapital(Bloom,Griffith&VanReenen,2002),(ChettyandSaez,2003)Discontinuity(seeover)Shock-financialcrisisandKibutzim(Abramitzky,2007)Disasters-EthiopianJewsairlift(Gould,Levy&Passerman,2004)NATURALEXPERIMENTS(2)NaturalexperimentsarealmostthehollygrailofmodernappliedeconomicsIntheabsenceoftrueexperimentstheyprovidethebestwaytoprovidesimpleidentificationCoupleofstandardwaytousenaturalexperimentsinpracticeDiscountinunityanalysisand/orDifferenceindifferencesDISCONTINUITYANALYSIS–example1RegionA
(notax)RegionB
(50%tax)Imaginea50%taxisleviedoninvestmentintherichcoastalregionAbutnotinthepoorinlandregionB.Ifyousawthegraphbelowcouldyousaywhattheimpactofthetaxisoninvestment?InvestmentEstimatedimpactofthetaxDISCONTINUITYANALYSIS–example2ImpactoftelephonesonpriceoffishinKerala(India)DIFFERNCESINDIFFERENCESt0denotespre-treatmentperiodsforwhichdataareavailablet1denotespost-treatmentperiodsforwhichdataareavailableAveragechangeinoutcome(preandpost-treatment)fortreatmentgroupminusaveragechangeinoutcomeforcontrolgroupIdentificationcomesfromthedifferentialchangebetweenthetwogroupspreandpost-treatmentdifferenceoutunobservedfixedeffectsdifferenceoutcommontimeeffectsKeyassumptionofcommontimeeffectsforthetwogroupsPOLICYEXAMPLEOF“DIFF-IN-DIFF”SmallfirmsR&Dtaxcreditintroducedin2000forfirmswith250orlessemployeesSocouldlookatfirmsbeforeandaftercreditButotherthingsalsochanging(2000peakofdotcomboometc…)Soneedtosetupacontrolgroupofcompanieslooksimilartofirmsgettingthecreditexceptdon’tgetthecreditComparefirmswith240employeestothosewith260Thisisdouble-diff(ordiffindiffs)tocomparedifferences:Betweenpreandpostthecredit(1999versus2001)Betweenthetreated(240employees)anduntreatedfirms(260employees)DefiningIdentificationExperimentsNaturalExperimentsInstrumentalvariablesEconometricIdentificationINSTRUMENTALVARIABLES(1)Wanttolookateffectofschooling(Si)onearnings(Yi)Assumethetruemodelis: Yi=α+β1Si+β2Ai+viwhereAiis(unobserved)abilitywhichispositivelycorrelatedwithSi,andviisrandomindependentnoiseWhatwouldhappenifweestimatedthefollowinginstead? Yi=a+b1Si+eiwhereei=β2Ai+viINSTRUMENTALVARIABLES(2)------BackgroundAssumeestimatingequationbelowinOrdinaryLeastSquares Y=α+βX+eTheestimateofβ =E(Y’X)/E(X’X) =E((βX+e)’X)/E(X’X) =β+E(e’X)/E(X’X) =βonlyifeandXareindependentButifeandXarecorrelatedthentheestimatedisbiased,andXiscalled“endogenous”(correlatedwiththeerror)---------------------INSTRUMENTALVARIABLES(3)Thus,estimationofthefollowingwouldbebiased: Yi=a+b1Si+eibecauseSiandeiarecorrelatedaseiisafunctionofability E[b1]
=E[Y’S]/E[S’S] =E[(β1Si+β2Ai+vi)’S]/E[S’S] =β1+E[(β2Ai+vi)’S]/E[S’S] =β1+β2E[Ai’S]/E[S’S] >β1Sobecauseignoreability,whichiscorrelatedwithschooling,weoverestimatetheimpactofschoolingonearningsINSTRUMENTALVARIABLES(4)Imaginewehadavariable–calledaninstrumentZ–thatwascorrelatedwithschoolingbutnotability.WecouldthenusethistoexplainvariationinschoolingasitisnotcorrelatedwithabilityOneexampleofthiswouldbeiftheGovernmentpaideveryonebornonevendaystostayinschoolThen“bornonanevenday”wouldbeaninstrumentforschooling–correlatedwithschoolingbutnotabilityInpracticeinstrumentsareoftenhardtofindINSTRUMENTALVARIABLES(5)AssumethatZiscorrelatedwithSbutnotA.ThenthefollowinginstrumentalvariableestimatorisconsistentE[b1IV] =E[Y’Z]/E[S’Z] =E[(β1Si+β2Ai+vi)’Z]/E[S’Z] =E[β1Si’Z+β2Ai’Z
+vi’Z]/E[S’Z] =β1+(β2E[Ai’S]+E[vi’Z])/E[S’Z] =β1Statawillcalculatethisforyou.AllyouneedtofindisavariablethatonlyaffectsyourdependentvariableviathevariableyouareinterestedinINSTRUMENTALVARIABLESAnyquestionsonthis?Imagine
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年工程合同協(xié)議審批會簽單
- 《找規(guī)律》(教案)北師大版三年級下冊數(shù)學
- 農(nóng)村建房合同協(xié)議書電子版(2025年版)
- 第13課 網(wǎng)絡(luò)安全防范 教學設(shè)計 2024-2025學年浙教版(2023)初中信息技術(shù)八年級上冊
- 第五單元-解決問題的策略-(單元測試)-蘇教版數(shù)學三年級上冊(含解析)
- 2023年現(xiàn)場總線智能儀表投資申請報告
- 2025年廣西演藝職業(yè)學院單招職業(yè)傾向性測試題庫完整版
- 2024年電工儀器儀表項目資金需求報告代可行性研究報告
- 2025年黑龍江省單招職業(yè)適應性測試題庫一套
- 2025陜西省建筑安全員-A證考試題庫附答案
- 初中物理競賽及自主招生講義:第7講 密度、壓強與浮力(共5節(jié))含解析
- 高中主題班會 梁文鋒和他的DeepSeek-由DeepSeek爆火開啟高中第一課-高中主題班會課件
- 一年級下冊書法教案 (一)
- 2024-2025學年重慶市渝中區(qū)四年級(上)期末數(shù)學試卷
- 2025年人教版中考英語一輪復習:七年級下冊考點測試卷(含答案)
- 四川省成都市2025年中考數(shù)學模擬試卷五套附參考答案
- 國家安全網(wǎng)絡(luò)教育
- 垃圾發(fā)電廠汽輪機培訓
- 《浙江省應急管理行政處罰裁量基準適用細則》知識培訓
- 2025年山東健康集團招聘筆試參考題庫含答案解析
- 手術(shù)室突然停電應急演練
評論
0/150
提交評論