版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年山東醫(yī)學(xué)高等專(zhuān)科學(xué)校高職單招(數(shù)學(xué))試題庫(kù)含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購(gòu)買(mǎi)!第1卷一.綜合題(共50題)1.點(diǎn)(2,0,3)在空間直角坐標(biāo)系中的位置是在()
A.y軸上
B.xOy平面上
C.xOz平面上
D.第一卦限內(nèi)答案:C2.不等式|3x-2|>4的解集是______.答案:由|3x-2|>4可得
3x-2>4
或3x-2<-4,∴x>2或x<-23.故為:(-∞,-23)∪(2,+∞).3.設(shè)A(1,-1,1),B(3,1,5),則線(xiàn)段AB的中點(diǎn)在空間直角坐標(biāo)系中的位置是()
A.在y軸上
B.在xOy面內(nèi)
C.在xOz面內(nèi)
D.在yOz面內(nèi)答案:C4.隨機(jī)變量ξ服從二項(xiàng)分布ξ~B(n,p),且Eξ=300,Dξ=200,則p等于()
A.
B.0
C.1
D.答案:D5.如圖所示,設(shè)k1,k2,k3分別是直線(xiàn)l1,l2,l3的斜率,則()
A.k1<k2<k3
B.k3<k1<k2
C.k3<k2<k1
D.k1<k3<k2
答案:C6.某種細(xì)菌在培養(yǎng)過(guò)程中,每20分鐘分裂一次(一個(gè)分裂為兩個(gè)).經(jīng)過(guò)3個(gè)小時(shí),這種細(xì)菌由1個(gè)可繁殖成()
A.511個(gè)
B.512個(gè)
C.1023個(gè)
D.1024個(gè)答案:B7.若集合S={a,b,c}(a、b、c∈R)中三個(gè)元素為邊可構(gòu)成一個(gè)三角形,那么該三角形一定不可能是()
A.銳角三角形
B.直角三角形
C.鈍角三角形
D.等腰三角形答案:D8.已知事件A與B互斥,且P(A)=0.3,P(B)=0.6,則P(A|.B)=______.答案:∵P(B)=0.6,∴P(.B)=0.4.又事件A與B互斥,且P(A)=0.3,∴P(A|.B)=P(A)P(.B)=0.30.4=34.故為:34.9.(1+2x)6的展開(kāi)式中x4的系數(shù)是______.答案:展開(kāi)式的通項(xiàng)為T(mén)r+1=2rC6rxr令r=4得展開(kāi)式中x4的系數(shù)是24C64=240故為:24010.如圖,AB為⊙O的直徑,弦AC、BD交于點(diǎn)P,若AP=5,PC=3,DP=5,則AB=______.
答案:∵AP=5,PC=3,DP=5由相交弦定理可得:BP=35又∵AB為直徑,∴∠ACB=90°∴BC=PB2-PC2=6∴AB=AC2-BC2=10故為:1011.設(shè)拋物線(xiàn)C:y2=3px(p>0)的焦點(diǎn)為F,點(diǎn)M在C上,|MF|=5,若以MF為直徑的圓過(guò)點(diǎn)(0,2),則C的方程為()
A.y2=4x或y2=8x
B.y2=2x或y2=8x
C.y2=4x或y2=16x
D.y2=2x或y2=16x答案:C12.在正方形ABCD中,已知它的邊長(zhǎng)為1,設(shè)=,=,=,則|++|的值為(
)
A.0
B.3
C.2+
D.2答案:D13.口袋中有5只球,編號(hào)為1,2,3,4,5,從中任取3球,以ξ表示取出的球的最大號(hào)碼,則Eξ的值是()A.4B.4.5C.4.75D.5答案:由題意,ξ的取值可以是3,4,5ξ=3時(shí),概率是1C35=110ξ=4時(shí),概率是C23C35=310(最大的是4其它兩個(gè)從1、2、3里面隨機(jī)?。│?5時(shí),概率是C24C35=610(最大的是5,其它兩個(gè)從1、2、3、4里面隨機(jī)?。嗥谕鸈ξ=3×110+4×310+5×610=4.5故選B.14.對(duì)于實(shí)數(shù)x、y,若|x-1|≤1,|y-2|≤1,則|x-2y+1|的最大值為_(kāi)_____.答案:∵|x-2y+1|=|(x-1)-2(y-1)|≤|x-1|+2|(y-2)+1|≤|x-1|+2|y-2|+2,再由|x-1|≤1,|y-2|≤1可得|x-1|+2|y-2|+2≤1+2+2=5,故|x-2y+1|的最大值為5,故為5.15.已知a,b,c是正實(shí)數(shù),且a+b+c=1,則的最小值為(
)A.3B.6C.9D.12答案:C解析:本題考查均值不等式等知識(shí)。將1代入中,得,當(dāng)且僅當(dāng),又,故時(shí)不等式取,選C。16.用樣本估計(jì)總體,下列說(shuō)法正確的是()A.樣本的結(jié)果就是總體的結(jié)果B.樣本容量越大,估計(jì)就越精確C.樣本容量越小,估計(jì)就越精確D.樣本的方差可以近似地反映總體的平均狀態(tài)答案:用樣本估計(jì)總體時(shí),樣本容量越大,估計(jì)就越精確,樣本的平均值可以近似地反映總體的平均狀態(tài),樣本的標(biāo)準(zhǔn)差可以近似地反映總體的波動(dòng)狀態(tài),數(shù)據(jù)的方差越大,說(shuō)明數(shù)據(jù)越不穩(wěn)定,樣本的結(jié)果可以粗略的估計(jì)總體的結(jié)果,但不就是總體的結(jié)果.故選B.17.1
甲、乙、丙三臺(tái)機(jī)床各自獨(dú)立地加工同一種零件,已知甲機(jī)床加工的零件是一等品而乙機(jī)床加工的零件不是一等品的概率為,乙機(jī)床加工的零件是一等品而丙機(jī)床加工的零件不是一等品的概率為,甲、丙兩臺(tái)機(jī)床加工的零件都是一等品的概率為
(1)分別求甲、乙、丙三臺(tái)機(jī)床各自加工零件是一等品的概率;
(2)從甲、乙、丙加工的零件中各取一個(gè)檢驗(yàn),求至少有一個(gè)一等品的概率.答案:見(jiàn)解析解析:解:(1)設(shè)A、B、C分別為甲、乙、丙三臺(tái)機(jī)床各自加工的零件是一等品的事件①②③18.從單詞“equation”選取5個(gè)不同的字母排成一排,含有“qu”(其中“qu”相連且順序不變)的不同排列共有()A.120個(gè)B.480個(gè)C.720個(gè)D.840個(gè)答案:要選取5個(gè)字母時(shí)首先從其它6個(gè)字母中選3個(gè)有C63種結(jié)果,再與“qu“組成的一個(gè)元素進(jìn)行全排列共有C63A44=480,故選B.19.如圖,AB是⊙O的直徑,P是AB延長(zhǎng)線(xiàn)上的一點(diǎn).過(guò)P作⊙O的切線(xiàn),切點(diǎn)為C,PC=23,若∠CAP=30°,則⊙O的直徑AB=______.答案:連接BC,設(shè)圓的直徑是x則三角形ABC是一個(gè)含有30°角的三角形,∴BC=12AB,三角形BPC是一個(gè)等腰三角形,BC=BP=12AB,∵PC是圓的切線(xiàn),PA是圓的割線(xiàn),∴PC2=PB?PC=12x?32x=34x2,∵PC=23,∴x=4,故為:420.抽樣調(diào)查在抽取調(diào)查對(duì)象時(shí)()A.按一定的方法抽取B.隨意抽取C.全部抽取D.根據(jù)個(gè)人的愛(ài)好抽取答案:一般地,抽樣方法分為3種:簡(jiǎn)單隨機(jī)抽樣、分層抽樣和系統(tǒng)抽樣無(wú)論是哪種抽樣方法,都遵循機(jī)會(huì)均等的原理,即在抽樣過(guò)程中,各個(gè)體被抽到的概率是相等的.根據(jù)以上分析,可知只有A項(xiàng)符合題意.故選:A21.已知數(shù)列{an}前n項(xiàng)的和為Sn,且滿(mǎn)足an=n2
(n∈N*).
(Ⅰ)求s1、s2、s3的值;
(Ⅱ)用數(shù)學(xué)歸納法證明sn=n(n+1)(2n+1)6
(n∈N*).答案:(Ⅰ)∵an=n2,n∈N*∴s1=a1=1,s2=a1+a2=1+4=5,s3=a1+a2+a3=1+4+9=14.…(6分)(Ⅱ)證明:(1)當(dāng)n=1時(shí),左邊=s1=1,右邊=1×(1+1)(2+1)6=1,所以等式成立.…(8分)(2)假設(shè)n=k(k∈N*)時(shí)結(jié)論成立,即Sk=k(k+1)(2k+1)6,…(10分)那么,Sk+1=Sk+(k+1)2=k(k+1)(2k+1)6+(k+1)2=k(k+1)(2k+1)+6(k+1)26=(k+1)(k+2)(2k+3)6=(k+1)[(k+1)+1][2(k+1)+1]6即n=k+1時(shí),等式也成立.…(13分)根據(jù)(1)(2)可知對(duì)任意的正整數(shù)n∈N*都成立.…(14分)22.某校在檢查學(xué)生作業(yè)時(shí),抽出每班學(xué)號(hào)尾數(shù)為4的學(xué)生作業(yè)進(jìn)行檢查,這里主要運(yùn)用的抽樣方法是()
A.分層抽樣
B.抽簽抽樣
C.隨機(jī)抽樣
D.系統(tǒng)抽樣答案:D23.設(shè)集合A={1,2},則滿(mǎn)足A∪B={1,2,3}的集合B的個(gè)數(shù)是()A.1B.3C.4D.8答案:A={1,2},A∪B={1,2,3},則集合B中必含有元素3,即此題可轉(zhuǎn)化為求集合A={1,2}的子集個(gè)數(shù)問(wèn)題,所以滿(mǎn)足題目條件的集合B共有22=4個(gè).故選擇C.24.已知在一個(gè)二階矩陣M對(duì)應(yīng)變換的作用下,點(diǎn)A(1,2)變成了點(diǎn)A′(7,10),點(diǎn)B(2,0)變成了點(diǎn)B′(2,4),求矩陣M.答案:設(shè)M=abcd,則abcd12=710,abcd20=24,(4分)即a+2b=7c+2d=102a=22c=4,解得a=1b=3c=2d=4(8分)所以M=1234.(10分)25.設(shè)直線(xiàn)l與平面α相交,且l的方向向量為a,α的法向量為n,若<a,n>=,則l與α所成的角為()
A.
B.
C.
D.答案:C26.設(shè)S(n)=1n+1n+1+1n+2+1n+3+…+1n2,則()A.S(2)=12+13B.S(2)=12+14C.S(2)=1+12+13+14D.S(2)=12+13+14答案:∵S(n)=1n+1n+1+1n+2+1n+3+…+1n2,當(dāng)n=2時(shí),n2=4故S(2)=12+13+14故選D27.對(duì)某種花卉的開(kāi)放花期追蹤調(diào)查,調(diào)查情況如表:
花期(天)11~1314~1617~1920~22個(gè)數(shù)20403010則這種卉的平均花期為_(kāi)_____天.答案:由表格知,花期平均為12天的有20個(gè),花期平均為15天的有40個(gè),花期平均為18天的有30個(gè),花期平均為21天的有10個(gè),∴這種花卉的評(píng)價(jià)花期是12×20+15×40+18×30+21×10100=16,故為:1628.已知三個(gè)向量a,b,c不共面,并且p=a+b-c,q=2a-3b-5c,r=-7a+18b+22c,向量p,q,r是否共面?答案:解:實(shí)數(shù)λ,μ,使p=λq+μr,則a+b-c=(2λ-7μ)a+(-3λ+18μ)b+(-5λ+22μ)c∵a,b,c不共面,∴∴即存在實(shí)數(shù),,使p=λq+μr,故向量p、q、r共面.29.方程x2+(m-2)x+5-m=0的兩根都大于2,則m的取值范圍是()
A.(-5,-4]
B.(-∞,-4]
C.(-∞,-2]
D.(-∞,-5)∪(-5,-4]答案:A30.設(shè)a=(2,2m-3,n+2),b=(4,2m+1,3n-2),且a∥b,則實(shí)數(shù)m,n的值分別為_(kāi)_____.答案:因?yàn)閍=(2,2m-3,n+2),b=(4,2m+1,3n-2),且a∥b,根據(jù)空間向量平行的坐標(biāo)表示公式,
所以24=2m-32m+124=n+23n-2,解得:m=12,n=6.故為:m=12,n=6.31.把一顆骰子擲兩次,觀察出現(xiàn)的點(diǎn)數(shù),并記第一次出現(xiàn)的點(diǎn)數(shù)為a,第二次出現(xiàn)的點(diǎn)數(shù)為b,則點(diǎn)(a,b)在直線(xiàn)x+y=5左下方的概率為()A.16B.56C.112D.1112答案:由題意知本題是一個(gè)古典概型,試驗(yàn)發(fā)生包含的事件數(shù)是6×6=36種結(jié)果,滿(mǎn)足條件的事件是點(diǎn)(a,b)在直線(xiàn)x+y=5左下方即a+b<5,可以列舉出所有滿(mǎn)足的情況(1,1)(1,2)(1,3),(2,1),(2,2)(3,1)共有6種結(jié)果,∴點(diǎn)在直線(xiàn)的下方的概率是636=16故選A.32.選修4-1:幾何證明選講
如圖,D,E分別為△ABC的邊AB,AC上的點(diǎn),且不與△ABC的頂點(diǎn)重合.已知AE的長(zhǎng)為m,AC的長(zhǎng)為n,AD,AB的長(zhǎng)是關(guān)于x的方程x2-14x+mn=0的兩個(gè)根.
(Ⅰ)證明:C,B,D,E四點(diǎn)共圓;
(Ⅱ)若∠A=90°,且m=4,n=6,求C,B,D,E所在圓的半徑.
答案:(I)連接DE,根據(jù)題意在△ADE和△ACB中,AD×AB=mn=AE×AC,即ADAC=AEAB又∠DAE=∠CAB,從而△ADE∽△ACB因此∠ADE=∠ACB∴C,B,D,E四點(diǎn)共圓.(Ⅱ)m=4,n=6時(shí),方程x2-14x+mn=0的兩根為x1=2,x2=12.故AD=2,AB=12.取CE的中點(diǎn)G,DB的中點(diǎn)F,分別過(guò)G,F(xiàn)作AC,AB的垂線(xiàn),兩垂線(xiàn)相交于H點(diǎn),連接DH.∵C,B,D,E四點(diǎn)共圓,∴C,B,D,E四點(diǎn)所在圓的圓心為H,半徑為DH.由于∠A=90°,故GH∥AB,HF∥AC.HF=AG=5,DF=12(12-2)=5.故C,B,D,E四點(diǎn)所在圓的半徑為5233.國(guó)旗上的正五角星的每一個(gè)頂角是多少度?答案:由圖可知:∠AFG=∠C+∠E=2∠C,∠AGF=∠B+∠D=2∠B,∴∠A+∠AFG+∠AGF=∠A+2∠C+2∠B=5∠A∴5∠A=180°,∴∠A=36°.34.已知隨機(jī)變量X滿(mǎn)足D(X)=2,則D(3X+2)=()
A.2
B.8
C.18
D.20答案:C35.若回歸直線(xiàn)方程中的回歸系數(shù)b=0時(shí),則相關(guān)系數(shù)r=______.答案:由于在回歸系數(shù)b的計(jì)算公式中,與相關(guān)指數(shù)的計(jì)算公式中,它們的分子相同,故為:0.36.(選做題)方程ρ=cosθ與(t為參數(shù))分別表示何種曲線(xiàn)(
)。答案:圓,雙曲線(xiàn)37.(2x+1)5的展開(kāi)式中的第3項(xiàng)的系數(shù)是()A.10B.40C.80D.120答案:(2x+1)5的展開(kāi)式中的第3項(xiàng)為T(mén)3=C25(2x)3
×1=80x3,故(2x+1)5的展開(kāi)式中的第3項(xiàng)的系數(shù)是80,故選C.38.已知=(-3,2,5),=(1,x,-1),且=2,則x的值為()
A.3
B.4
C.5
D.6答案:C39.設(shè)a,b,c為正數(shù),利用排序不等式證明a3+b3+c3≥3abc.答案:證明:不妨設(shè)a≥b≥c>0,∴a2≥b2≥c2,由排序原理:順序和≥反序和,得:a3+b3≥a2b+b2a,b3+c3≥b2c+c2b,c3+a3≥a2c+c2a三式相加得2(a3+b3+c3)≥a(b2+c2)+b(c2+a2)+c(a2+b2).又a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca.所以2(a3+b3+c3)≥6abc,∴a3+b3+c3≥3abc.當(dāng)且僅當(dāng)a=b=c時(shí),等號(hào)成立.40.已知雙曲線(xiàn)的漸近線(xiàn)方程為2x±3y=0,F(xiàn)(0,-5)為雙曲線(xiàn)的一個(gè)焦點(diǎn),則雙曲線(xiàn)的方程為()
A.
B.
C.
D.答案:B41.雙曲線(xiàn)(n>1)的兩焦點(diǎn)為F1、、F2,P在雙曲線(xiàn)上,且滿(mǎn)足|PF1|+|PF2|=2,則△P
F1F2的面積為()
A.
B.1
C.2
D.4答案:B42.方程x2-y2=0表示的圖形是()
A.兩條相交直線(xiàn)
B.兩條平行直線(xiàn)
C.兩條重合直線(xiàn)
D.一個(gè)點(diǎn)答案:A43.在Rt△ABC中,若∠C=90°,AC=b,BC=a,則△ABC外接圓半徑r=a2+b22.運(yùn)用類(lèi)比方法,若三棱錐的三條側(cè)棱兩兩互相垂直且長(zhǎng)度分別為a,b,c,則其外接球的半徑R=______.答案:直角三角形外接圓半徑為斜邊長(zhǎng)的一半,由類(lèi)比推理可知若三棱錐的三條側(cè)棱兩兩互相垂直且長(zhǎng)度分別為a,b,c,將三棱錐補(bǔ)成一個(gè)長(zhǎng)方體,其外接球的半徑R為長(zhǎng)方體對(duì)角線(xiàn)長(zhǎng)的一半.故為a2+b2+c22故為:a2+b2+c2244.已知:如圖,CD是⊙O的直徑,AE切⊙O于點(diǎn)B,DC的延長(zhǎng)線(xiàn)交AB于點(diǎn)A,∠A=20°,則
∠DBE=______.答案:連接BC,∵CD是⊙O的直徑,∴∠CBD=90°,∵AE是⊙O的切線(xiàn),∴∠DBE=∠1,∠2=∠D;又∵∠1+∠D=90°,即∠1+∠2=90°---(1),∠A+∠2=∠1----(2),(1)-(2)得∠1=55°即∠DBE=55°.故為:∠DBE=55°.45.命題“存在x0∈R,2x0≤0”的否定是()
A.不存在x0∈R,2x0>0
B.存在x0∈R,2x0≥0
C.對(duì)任意的x∈R,2x≤0
D.對(duì)任意的x∈R,2x>0答案:D46.下列圖形中不一定是平面圖形的是()
A.三角形
B.四邊相等的四邊形
C.梯形
D.平行四邊形答案:B47.設(shè)f(n)=nn+1,g(n)=(n+1)n,n∈N*.
(1)當(dāng)n=1,2,3,4時(shí),比較f(n)與g(n)的大?。?/p>
(2)根據(jù)(1)的結(jié)果猜測(cè)一個(gè)一般性結(jié)論,并加以證明.答案:(1)當(dāng)n=1時(shí),nn+1=1,(n+1)n=2,此時(shí),nn+1<(n+1)n,當(dāng)n=2時(shí),nn+1=8,(n+1)n=9,此時(shí),nn+1<(n+1)n,當(dāng)n=3時(shí),nn+1=81,(n+1)n=64,此時(shí),nn+1>(n+1)n,當(dāng)n=4時(shí),nn+1=1024,(n+1)n=625,此時(shí),nn+1>(n+1)n,(2)根據(jù)上述結(jié)論,我們猜想:當(dāng)n≥3時(shí),nn+1>(n+1)n(n∈N*)恒成立.①當(dāng)n=3時(shí),nn+1=34=81>(n+1)n=43=64即nn+1>(n+1)n成立.②假設(shè)當(dāng)n=k時(shí),kk+1>(k+1)k成立,即:kk+1(k+1)k>1則當(dāng)n=k+1時(shí),(k+1)k+2(k+2)k+1=(k+1)?(k+1k+2)k+1>(k+1)?(kk+1)k+1=kk+1(k+1)k>1即(k+1)k+2>(k+2)k+1成立,即當(dāng)n=k+1時(shí)也成立,∴當(dāng)n≥3時(shí),nn+1>(n+1)n(n∈N*)恒成立.48.在平面直角坐標(biāo)系中,點(diǎn)A(4,-2)按向量a=(-1,3)平移,得點(diǎn)A′的坐標(biāo)是()A.(5,-5)B.(3,1)C.(5,1)D.(3,-5)答案:設(shè)A′的坐標(biāo)為(x′,y′),則x′=4-1=3y′=-2+3=1,∴A′(3,1).故選B.49.將一個(gè)等腰梯形繞著它的較長(zhǎng)的底邊所在的直線(xiàn)旋轉(zhuǎn)一周,所得的幾何體是(
)答案:B50.在同一個(gè)坐標(biāo)系中畫(huà)出函數(shù)y=ax,y=sinax的部分圖象,其中a>0且a≠1,則下列所給圖象中可能正確的是()
A.
B.
C.
D.
答案:D第2卷一.綜合題(共50題)1.點(diǎn)M的直角坐標(biāo)是,則點(diǎn)M的極坐標(biāo)為()
A.(2,)
B.(2,-)
C.(2,)
D.(2,2kπ+)(k∈Z)答案:C2.A、B、C、D、E五種不同的商品要在貨架上排成一排,其中A、B兩種商品必須排在一起,而C、D兩種商品不能排在一起,則不同的排法共有______種.答案:先把A、B進(jìn)行排列,有A22種排法,再把A、B看成一個(gè)元素,和E進(jìn)行排列,有A22種排法,最后再把C、D插入進(jìn)去,有A23種排法,根據(jù)分步計(jì)數(shù)原理可得A22A22A23=24種排法.故為:243.四支足球隊(duì)爭(zhēng)奪冠、亞軍,不同的結(jié)果有()
A.8種
B.10種
C.12種
D.16種答案:C4.已知關(guān)于x的方程2kx2-2x-3k-2=0的兩實(shí)根一個(gè)小于1,另一個(gè)大于1,求實(shí)數(shù)k的取值范圍。答案:解:令,為使方程f(x)=0的兩實(shí)根一個(gè)小于1,另一個(gè)大于1,只需或,即或,解得k>0或k<-4,故k的取值范圍是k>0或k<-4.5.傾斜角為60°的直線(xiàn)的斜率為_(kāi)_____.答案:因?yàn)橹本€(xiàn)的傾斜角為60°,所以直線(xiàn)的斜率k=tan60°=3.故為:3.6.已知a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),若a、b、c三個(gè)向量共面,則實(shí)數(shù)λ等于
A.
B.
C.
D.答案:D7.“神六”上天并順利返回,讓越來(lái)越多的青少年對(duì)航天技術(shù)發(fā)生了興趣.某學(xué)??萍夹〗M在計(jì)算機(jī)上模擬航天器變軌返回試驗(yàn),設(shè)計(jì)方案
如圖:航天器運(yùn)行(按順時(shí)針?lè)较颍┑能壽E方程為x2100+y225=1,變軌(航天器運(yùn)行軌跡由橢圓變?yōu)閽佄锞€(xiàn))后返回的軌跡是以y軸為
對(duì)稱(chēng)軸、M(0,647)為頂點(diǎn)的拋物線(xiàn)的實(shí)線(xiàn)部分,降落點(diǎn)為D(8,0),觀測(cè)點(diǎn)A(4,0)、B(6,0)同時(shí)跟蹤航天器.試問(wèn):當(dāng)航天器在x軸上方時(shí),觀測(cè)點(diǎn)A、B測(cè)得離航天器的距離分別為_(kāi)_____時(shí)航天器發(fā)出變軌指令.答案:設(shè)曲線(xiàn)方程為y=ax2+647,由題意可知,0=a?64+647.∴a=-17,∴曲線(xiàn)方程為y=-17x2+647.設(shè)變軌點(diǎn)為C(x,y),根據(jù)題意可知,拋物線(xiàn)方程與橢圓方程聯(lián)立,可得4y2-7y-36=0,y=4或y=-94(不合題意,舍去).∴y=4.∴x=6或x=-6(不合題意,舍去).∴C點(diǎn)的坐標(biāo)為(6,4),|AC|=25,|BC|=4.故為:25、4.8.為了了解某社區(qū)居民是否準(zhǔn)備收看奧運(yùn)會(huì)開(kāi)幕式,某記者分別從社區(qū)的60~70歲,40~50歲,20~30歲的三個(gè)年齡段中的160,240,X人中,采用分層抽樣的方法共抽出了30人進(jìn)行調(diào)查,若60~70歲這個(gè)年齡段中抽查了8人,那么x為()
A.90
B.120
C.180
D.200答案:D9.方程.12
41x
x21-3
9.=0的解集為_(kāi)_____.答案:.12
41x
x21-3
9.=9x+2x2-12-4x+3x2-18=0,即x2+x-6=0,故x1=-3,x2=2.故方程的解集為{-3,2}.10.設(shè)x+y+z=1,求F=2x2+3y2+z2的最小值.答案:∵1=(x+y+z)2=(12?2x+13?3y+1?z)2≤(12+13+1)(2x2+3y2+z2)∴F=2x2+3y2+z2≥611(8分)當(dāng)且僅當(dāng)2x12=3y13=z1且x+y+z=1,x=311,y=211,z=611F有最小值611(12分)11.從1,2,…,9這九個(gè)數(shù)中,隨機(jī)抽取3個(gè)不同的數(shù),則這3個(gè)數(shù)的和為偶數(shù)的概率是()A.59B.49C.1121D.1021答案:基本事件總數(shù)為C93,設(shè)抽取3個(gè)數(shù),和為偶數(shù)為事件A,則A事件數(shù)包括兩類(lèi):抽取3個(gè)數(shù)全為偶數(shù),或抽取3數(shù)中2個(gè)奇數(shù)1個(gè)偶數(shù),前者C43,后者C41C52.∴A中基本事件數(shù)為C43+C41C52.∴符合要求的概率為C34+C14C25C39=1121.12.用三段論的形式寫(xiě)出下列演繹推理.
(1)若兩角是對(duì)頂角,則該兩角相等,所以若兩角不相等,則該兩角不是對(duì)頂角;
(2)矩形的對(duì)角線(xiàn)相等,正方形是矩形,所以,正方形的對(duì)角線(xiàn)相等.答案:(1)兩個(gè)角是對(duì)頂角則兩角相等,大前提∠1和∠2不相等,小前提∠1和∠2不是對(duì)頂角.結(jié)論(2)每一個(gè)矩形的對(duì)角線(xiàn)相等,大前提正方形是矩形,小前提正方形的對(duì)角線(xiàn)相等.結(jié)論13.在四邊形ABCD中,若=+,則()
A.ABCD為矩形
B.ABCD是菱形
C.ABCD是正方形
D.ABCD是平行四邊形答案:D14.已知兩點(diǎn)P(4,-9),Q(-2,3),則直線(xiàn)PQ與y軸的交點(diǎn)分有向線(xiàn)段PQ的比為_(kāi)_____.答案:直線(xiàn)PQ與y軸的交點(diǎn)的橫坐標(biāo)等于0,由定比分點(diǎn)坐標(biāo)公式可得0=4+λ(-2)1+λ,解得λ=2,故直線(xiàn)PQ與y軸的交點(diǎn)分有向線(xiàn)段PQ的比為
λ=2,故為:2.15.如圖,AB是平面a的斜線(xiàn)段,A為斜足,若點(diǎn)P在平面a內(nèi)運(yùn)動(dòng),使得△ABP的面積為定值,則動(dòng)點(diǎn)P的軌跡是()A.圓B.橢圓C.一條直線(xiàn)D.兩條平行直線(xiàn)答案:本題其實(shí)就是一個(gè)平面斜截一個(gè)圓柱表面的問(wèn)題,因?yàn)槿切蚊娣e為定值,以AB為底,則底邊長(zhǎng)一定,從而可得P到直線(xiàn)AB的距離為定值,分析可得,點(diǎn)P的軌跡為一以AB為軸線(xiàn)的圓柱面,與平面α的交線(xiàn),且α與圓柱的軸線(xiàn)斜交,由平面與圓柱面的截面的性質(zhì)判斷,可得P的軌跡為橢圓.16.已知二次函數(shù)f(x)=x2+bx+c,f(0)<0,則該函數(shù)零點(diǎn)的個(gè)數(shù)為()
A.1
B.2
C.3
D.0答案:B17.若2x1+3y1=4,2x2+3y2=4,則過(guò)點(diǎn)A(x1,y1),B(x2,y2)的直線(xiàn)方程是______.答案:∵2x1+3y1=4,2x2+3y2=4,∴點(diǎn)A(x1,y1),B(x2,y2)在直線(xiàn)2x+3y=4上,又因?yàn)檫^(guò)兩點(diǎn)確定一條直線(xiàn),故所求直線(xiàn)方程為2x+3y=4故為:2x+3y=418.已知a=4,b=1,焦點(diǎn)在x軸上的橢圓方程是(
)
A.
B.
C.
D.答案:C19.若平面α,β的法向量分別為(-1,2,4),(x,-1,-2),并且α⊥β,則x的值為()A.10B.-10C.12D.-12答案:∵α⊥β,∴平面α,β的法向量互相垂直∴(-1,2,4)?(x,-1,-2)=0即-1×x+(-1)×2+4×(-2)=0解得x=-10故選B.20.設(shè)全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},則(CuA)∩B=()A.{2}B.{4,6}C.{l,3,5}D.{4,6,7,8}答案:∵全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},∴CUA={4,6,7,8},∴(CuA)∩B={4,6}.故選B.21.如圖,PA切圓O于點(diǎn)A,割線(xiàn)PBC經(jīng)過(guò)圓心O,OB=PB=1,OA繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)600到OD,則PD的長(zhǎng)為()
A.3
B.
C.
D.
答案:D22.從2008名學(xué)生中選取50名學(xué)生參加數(shù)學(xué)競(jìng)賽,若采用下面的方法選?。合扔煤?jiǎn)單隨機(jī)抽樣從2008人中剔除8人,剩下的2000人再按系統(tǒng)抽樣的方法抽取50人,則在2008人中,每人入選的概率()
A.不全相等
B.均不相等
C.都相等,且為
D.都相等,且為答案:C23.某幾何體的三視圖如圖所示,則這個(gè)幾何體的體積是______.答案:由三視圖可知該幾何體為是一平放的直三棱柱,底面是邊長(zhǎng)為2的正三角形,棱柱的側(cè)棱為3,也為高.V=Sh=34×22
×3=33故為:33.24.試求288和123的最大公約數(shù)是
答案:3解析:,,,.∴和的最大公約數(shù)25.已知P(x,y)是橢圓x24+y2=1上的點(diǎn),求M=x+2y的取值范圍.答案:∵x24+y2=1的參數(shù)方程是x=2cosθy=sinθ(θ是參數(shù))∴設(shè)P(2cosθ,sinθ)(4分)∴M=x+2y=2cosθ+2sinθ=22sin(θ+π4)
(7分)∴M=x+2y的取值范圍是[-22,22].(10分)26.滿(mǎn)足{1,2}∪A={1,2,3}的集合A的個(gè)數(shù)為_(kāi)_____.答案:由{1,2}∪A={1,2,3},所以A={3},或{1,3},或{2,3},或{1,2,3}.所以集合A的個(gè)數(shù)為4.27.經(jīng)過(guò)兩點(diǎn)A(-3,5),B(1,1
)的直線(xiàn)傾斜角為_(kāi)_____.答案:因?yàn)閮牲c(diǎn)A(-3,5),B(1,1
)的直線(xiàn)的斜率為k=1-51-(-3)=-1所以直線(xiàn)的傾斜角為:135°.故為:135°.28.若P=+,Q=+(a≥0),則P,Q的大小關(guān)系是()
A.P>Q
B.P=Q
C.P<Q
D.由a的取值確定答案:C29.如圖所示,圓的內(nèi)接△ABC的∠C的平分線(xiàn)CD延長(zhǎng)后交圓于點(diǎn)E,連接BE,已知BD=3,CE=7,BC=5,則線(xiàn)段BE=()
A.
B.
C.
D.4
答案:B30.若集合M={a,b,c}中的元素是△ABC的三邊長(zhǎng),則△ABC一定不是()
A.銳角三角形
B.直角三角形
C.鈍角三角形
D.等腰三角形答案:D31.設(shè)復(fù)數(shù)z=cosθ+sinθi,0≤θ≤π,則|z+1|的最大值為_(kāi)_____.答案:復(fù)數(shù)z=cosθ+sinθi,0≤θ≤π,則|z+1|=|cosθ+1+isinθ|=(1+cosθ)2+sin2θ=2+2cosθ≤2.故為:2.32.引入復(fù)數(shù)后,數(shù)系的結(jié)構(gòu)圖為()
A.
B.
C.
D.
答案:A33.若方程x2+ky2=2表示焦點(diǎn)在y軸上的橢圓,那么實(shí)數(shù)k的取值范圍是()A.(0,+∞)B.(0,2)C.(1,+∞)D.(0,1)答案:∵方程x2+ky2=2,即x22+y22k=1表示焦點(diǎn)在y軸上的橢圓∴2k>2故0<k<1故選D.34.若圓x2+y2=4與圓x2+y2+2ay-6=0(a>0)的公共弦的長(zhǎng)為23,則a=______.答案:由已知x2+y2+2ay-6=0的半徑為6+a2,由圖可知6+a2-(-a-1)2=(3)2,解之得a=1.故為:1.35.已知某幾何體的三視圖如圖,畫(huà)出它的直觀圖,求該幾何體的表面積和體積.答案:由三視圖可知:該幾何體是由下面長(zhǎng)、寬、高分別為4、4、2的長(zhǎng)方體,上面為高是2、底面是邊長(zhǎng)分別為4、4的矩形的四棱錐,而組成的幾何體.它的直觀圖如圖.∴S表面積=4×2×4+4×4+4×12×4×22=48+162.V體積=4×4×2+13×4×4×2=1283.36.直角三角形兩直角邊邊長(zhǎng)分別為3和4,將此三角形繞其斜邊旋轉(zhuǎn)一周,求得到的旋轉(zhuǎn)體的表面積和體積.答案:根據(jù)題意,所求旋轉(zhuǎn)體由兩個(gè)同底的圓錐拼接而成它的底面半徑等于直角三角形斜邊上的高,高分別等于兩條直角邊在斜邊的射影長(zhǎng)∵兩直角邊邊長(zhǎng)分別為3和4,∴斜邊長(zhǎng)為32+42=5,由面積公式可得斜邊上的高為h=3×45=125可得所求旋轉(zhuǎn)體的底面半徑r=125因此,兩個(gè)圓錐的側(cè)面積分別為S上側(cè)面=π×125×4=48π5;S下側(cè)面=π×125×3=36π5∴旋轉(zhuǎn)體的表面積S=48π5+36π5=84π5由錐體的體積公式,可得旋轉(zhuǎn)體的體積為V=13π×(125)2×5=48π537.從5名男學(xué)生、3名女學(xué)生中選3人參加某項(xiàng)知識(shí)對(duì)抗賽,要求這3人中既有男生又有女生,則不同的選法共有()A.45種B.56種C.90種D.120種答案:由題意知本題是一個(gè)分類(lèi)計(jì)數(shù)問(wèn)題,要求這3人中既有男生又有女生包括兩種情況,一是兩女一男,二是兩男一女,當(dāng)包括兩女一男時(shí),有C32C51=15種結(jié)果,當(dāng)包括兩男一女時(shí),有C31C52=30種結(jié)果,∴根據(jù)分類(lèi)加法得到共有15+30=45故選A.38.設(shè)曲線(xiàn)C的方程是,將C沿x軸,y軸正向分別平移單位長(zhǎng)度后,得到曲線(xiàn)C1.(1)寫(xiě)出曲線(xiàn)C1的方程;(2)證明曲線(xiàn)C與C1關(guān)于點(diǎn)A(,)對(duì)稱(chēng).答案:(1)(2)證明略解析:(1)由已知得,,則平移公式是即代入方程得曲線(xiàn)C1的方程是(2)在曲線(xiàn)C上任取一點(diǎn),設(shè)是關(guān)于點(diǎn)A的對(duì)稱(chēng)點(diǎn),則有,,代入曲線(xiàn)C的方程,得關(guān)于的方程,即可知點(diǎn)在曲線(xiàn)C1上.反過(guò)來(lái),同樣可以證明,在曲線(xiàn)C1上的點(diǎn)關(guān)于點(diǎn)A的對(duì)稱(chēng)點(diǎn)在曲線(xiàn)C上,因此,曲線(xiàn)C與C1關(guān)于點(diǎn)A對(duì)稱(chēng).39.若一元二次方程x2+(a-1)x+1-a2=0有兩個(gè)正實(shí)數(shù)根,則a的取值范圍是(
)
A.(-1,1)
B.(-∞,)∪[1,+∞)
C.(-1,]
D.[,1)答案:C40.不等式-x≤1的解集是(
)。答案:{x|0≤x≤2}41.△ABC中,A(1,2),B(3,1),重心G(3,2),則C點(diǎn)坐標(biāo)為_(kāi)_____.答案:設(shè)點(diǎn)C(x,y)由重心坐標(biāo)公式知3×3=1+3+x,6=2+1+y解得x=5,y=3故點(diǎn)C的坐標(biāo)為(5,3)故為(5,3)42.若方程x2-3x+mx+m=0的兩根均在(0,+∞)內(nèi),則m的取值范圍是(
)
A.m≤1
B.0<m≤1
C.m>1
D.0<m<1答案:B43.已知圓的極坐標(biāo)方程是ρ=2cosθ,那么該圓的直角坐標(biāo)方程是()
A.(x-1)2+y2=1
B.x2+(y-1)2=1
C.(x+1)2+y2=1
D.x2+y2=2答案:A44.已知指數(shù)函數(shù)f(x)的圖象過(guò)點(diǎn)(3,8),求f(6)的值.答案:設(shè)指數(shù)函數(shù)為:f(x)=ax,因?yàn)橹笖?shù)函數(shù)f(x)的圖象過(guò)點(diǎn)(3,8),所以8=a3,∴a=2,所求指數(shù)函數(shù)為f(x)=2x;所以f(6)=26=64所以f(6)的值為64.45.已知直線(xiàn)l:x=2+ty=1-at(t為參數(shù)),與橢圓x2+4y2=16交于A、B兩點(diǎn).
(1)若A,B的中點(diǎn)為P(2,1),求|AB|;
(2)若P(2,1)是弦AB的一個(gè)三等分點(diǎn),求直線(xiàn)l的直角坐標(biāo)方程.答案:(1)直線(xiàn)l:x=2+ty=1-at代入橢圓方程,整理得(4a2+1)t2-4(2a-1)t-8=0設(shè)A、B對(duì)應(yīng)的參數(shù)分別為t1、t2,則t1+t2=4(2a-1)4a2+1,t1t2=-84a2+1,∵A,B的中點(diǎn)為P(2,1),∴t1+t2=0解之得a=12,∴t1t2=-4,∵|AP|=12+(-12)2|t1|=52|t1|,|BP|=52|t2|,∴|AB|=52(|t1|+|t1|)=52×(t1+t2)2-4t1t2=25,(2)P(2,1)是弦AB的一個(gè)三等分點(diǎn),∴|AP|=12|PB|,∴1+a2|t1|=21+a2|t2|,?t1=-2t2,∴t1+t2=-t2=4(2a-1)4a2+1,t1t2=-2t
22=-84a2+1,∴t
22=44a2+1,∴16(2a-1)2(4a2+1)2=44a2+1,解得a=4±76,∴直線(xiàn)l的直角坐標(biāo)方程y-1=4±76(x-2).46.若拋物線(xiàn)y2=4x上一點(diǎn)P到其焦點(diǎn)的距離為3,則點(diǎn)P的橫坐標(biāo)等于______.答案:∵拋物線(xiàn)y2=4x=2px,∴p=2,由拋物線(xiàn)定義可知,拋物線(xiàn)上任一點(diǎn)到焦點(diǎn)的距離與到準(zhǔn)線(xiàn)的距離是相等的,∴|MF|=3=x+p2=3,∴x=2,故為:2.47.已知命題p:?x∈R,x2-x+1>0,則命題¬p
是______.答案:∵命題p:?x∈R,x2-x+1>0,∴命題p的否定是“?x∈R,x2-x+1≤0”故為:?x∈R,x2-x+1≤0.48.已知復(fù)數(shù)w滿(mǎn)足w-4=(3-2w)i(i為虛數(shù)單位),z=5w+|w-2|,求一個(gè)以z為根的實(shí)系數(shù)一元二次方程.答案:[解法一]∵復(fù)數(shù)w滿(mǎn)足w-4=(3-2w)i,∴w(1+2i)=4+3i,∴w(1+2i)(1-2i)=(4+3i)(1-2i),∴5w=10-5i,∴w=2-i.∴z=52-i+|2-i-2|=5(2+i)(2-i)(2+i)+1=2+i+1=3+i.若實(shí)系數(shù)一元二次方程有虛根z=3+i,則必有共軛虛根.z=3-i.∵z+.z=6,z?.z=10,∴所求的一個(gè)一元二次方程可以是x2-6x+10=0.[解法二]設(shè)w=a+b,(a,b∈Z),∴a+bi-4=3i-2ai+2b,得a-4=2bb=3-2a解得a=2b=-1,∴w=2-i,以下解法同[解法一].49.若直線(xiàn)ax+by+c=0(a,b,c都是正數(shù))與圓x2+y2=1相切,則以a,b,c為邊長(zhǎng)的三角形是()
A.銳角三角形
B.直角三角形
C.鈍角三角形
D.不能確定答案:B50.從集合{0,1,2,3,4,5,6}中任取兩個(gè)互不相等的數(shù)a,b,組成復(fù)數(shù)a+bi,其中虛數(shù)有()
A.36個(gè)
B.42個(gè)
C.30個(gè)
D.35個(gè)答案:A第3卷一.綜合題(共50題)1.(上海卷理3文8)動(dòng)點(diǎn)P到點(diǎn)F(2,0)的距離與它到直線(xiàn)x+2=0的距離相等,則P的軌跡方程為_(kāi)_____.答案:由拋物線(xiàn)的定義知點(diǎn)P的軌跡是以F為焦點(diǎn)的拋物線(xiàn),其開(kāi)口方向向右,且p2=2,解得p=4,所以其方程為y2=8x.故為y2=8x2.直線(xiàn)l1:y=ax+b,l2:y=bx+a
(a≠0,b≠0,a≠b),在同一坐標(biāo)系中的圖形大致是()
A.
B.
C.
D.
答案:C3.如圖,在△ABC中,∠ACB=90°,AB=8,∠BAC=60°,PC⊥平面ABC,PC=4,M為AB邊上的一個(gè)動(dòng)點(diǎn),求PM的最小值.答案:過(guò)C作CM⊥AB,連接PM,因?yàn)镻C⊥AB,所以AB⊥平面PCM,所以PM⊥AB,此時(shí)PM最短,∵∠BAC=60°,AB=8,∴AC=AB?cos60°=4.∴CM=AC?sin60°=4?32=23.∴PM=PC2+CM2=16+12=27.4.將參數(shù)方程化為普通方程為(
)
A.y=x-2
B.y=x+2
C.y=x-2(2≤x≤3)
D.y=x+2(0≤y≤1)答案:C5.已知向量a,b,向量c=2a+b,且|a|=1,|b|=2,a與b的夾角為60°
(1)求|c|2;(2)若向量d=ma-b,且d∥c,求實(shí)數(shù)m的值.答案:(1)∵|a|=1,|b|=2,a和b的夾角為60°∴a?b=|a||b|cos60°=1∴|c|2=(
2a+b)2=4a2+4ab+b2=4+4+4=12(2)∵d∥c∴存在實(shí)數(shù)λ使得d=λc即ma-b=λ(2a+b)又∵a,b不共線(xiàn)∴2λ=m,λ=-1∴m=-26.已知兩點(diǎn)P(4,-9),Q(-2,3),則直線(xiàn)PQ與y軸的交點(diǎn)分有向線(xiàn)段PQ的比為_(kāi)_____.答案:直線(xiàn)PQ與y軸的交點(diǎn)的橫坐標(biāo)等于0,由定比分點(diǎn)坐標(biāo)公式可得0=4+λ(-2)1+λ,解得λ=2,故直線(xiàn)PQ與y軸的交點(diǎn)分有向線(xiàn)段PQ的比為
λ=2,故為:2.7.直線(xiàn)kx-y+1=3k,當(dāng)k變動(dòng)時(shí),所有直線(xiàn)都通過(guò)定點(diǎn)
A.(0,0)
B.(0,1)
C.(3,1)
D.(2,1)答案:C8.在四棱錐P-ABCD中,底面ABCD是正方形,E為PD中點(diǎn),若PA=a,PB=b,PC=c,則BE=______.答案:BE=12(BP+BD)=-12PB
+12(BA+BC)=-12PB+12BA+12BC=-12PB+12(PA-PB)+12(PC-PB)=-32PB+12PA+
12PC=12a-32b+12c.故為:12a-32b+12c.9.某種產(chǎn)品的廣告費(fèi)支出x與銷(xiāo)售額y(單位:萬(wàn)元)之間有如下一組數(shù)據(jù):
x24568y3040605070若y與x之間的關(guān)系符合回歸直線(xiàn)方程y=6.5x+a,則a的值是()A.17.5B.27.5C.17D.14答案:由表格得.x=5,.y=50.
∵y關(guān)于x的線(xiàn)性回歸方程為y=6.5x+a,∴50=6.5×5+a,∴a=17.5.故選A.10.5顆骰子同時(shí)擲出,共擲100次則至少一次出現(xiàn)全為6點(diǎn)的概率為(
)A.B.C.D.答案:C解析:5顆骰子同時(shí)擲出,沒(méi)有全部出現(xiàn)6點(diǎn)的概率是,共擲100次至少一次出現(xiàn)全為6點(diǎn)的概率是.11.平行投影與中心投影之間的區(qū)別是
______.答案:平行投影與中心投影之間的區(qū)別是平行投影的投影線(xiàn)互相平行,而中心投影的投影線(xiàn)交于一點(diǎn),故為:平行投影的投影線(xiàn)互相平行,而中心投影的投影線(xiàn)交于一點(diǎn)12.已知F1、F2為橢圓x225+y29=1的兩個(gè)焦點(diǎn),過(guò)F1的直線(xiàn)交橢圓于A、B兩點(diǎn).若|F2A|+|F2B|=12,則|AB|=______.答案:由橢圓的定義得|AF1|+|AF2|=10|BF1|+|BF2|=10兩式相加得|AB|+|AF2|+|BF2|=20,即|AB|+12=20,∴|AB|=8.故:813.下列函數(shù)中,與函數(shù)y=x(x≥0)有相同圖象的一個(gè)是()A.y=x2B.y=(x)2C.y=3x3D.y=x2x答案:一個(gè)函數(shù)與函數(shù)y=x
(x≥0)有相同圖象時(shí),這兩個(gè)函數(shù)應(yīng)是同一個(gè)函數(shù).A中的函數(shù)和函數(shù)y=x
(x≥0)的值域不同,故不是同一個(gè)函數(shù).B中的函數(shù)和函數(shù)y=x
(x≥0)具有相同的定義域、值域、對(duì)應(yīng)關(guān)系,故是同一個(gè)函數(shù).C中的函數(shù)和函數(shù)y=x
(x≥0)的值域不同,故不是同一個(gè)函數(shù).D中的函數(shù)和函數(shù)y=x
(x≥0)的定義域不同,故不是同一個(gè)函數(shù).綜上,只有B中的函數(shù)和函數(shù)y=x
(x≥0)是同一個(gè)函數(shù),具有相同的圖象,故選B.14.命題:“如果ab=0,那么a、b中至少有一個(gè)等于0.”的逆否命題為_(kāi)_____
______.答案:∵ab=0的否命題是ab≠0,a、b中至少有一個(gè)為零的否命題是a≠0,且b≠0,∴命題“若ab=0,則a、b中至少有一個(gè)為零”的逆否命題是“若a≠0,且b≠0,則ab≠0.”故:如果a、b都不為等于0.那么ab≠015.請(qǐng)輸入一個(gè)奇數(shù)n的BASIC語(yǔ)句為_(kāi)_____.答案:INPUT表示輸入語(yǔ)句,輸入一個(gè)奇數(shù)n的BASIC語(yǔ)句為:INPUT“輸入一個(gè)奇數(shù)n”;n.故為:INPUT“輸入一個(gè)奇數(shù)n”;n.16.若向量、、滿(mǎn)足++=,=3,=1,=4,則等于(
)
A.-11
B.-12
C.-13
D.-14答案:C17.棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,=(
)
A.
B.4
C.
D.-4答案:D18.過(guò)點(diǎn)P(3,0)作一直線(xiàn),它夾在兩條直線(xiàn)l1:2x-y-3=0,l2:x+y+3=0之間的線(xiàn)段恰被點(diǎn)P平分,該直線(xiàn)的方程是()
A.4x-y-6=0
B.3x+2y-7=0
C.5x-y-15=0
D.5x+y-15=0答案:C19.已知單位向量a,b的夾角為,那么|a+2b|=()
A.2
B.
C.2
D.4答案:B20.已知f(x+1)=x2+2x+3,則f(2)的值為_(kāi)_____.答案:由f(x+1)=x2+2x+3,得f(1+1)=12+2×1+3=6,故為:6.21.不等式|x-500|≤5的解集是______.答案:因?yàn)椴坏仁絴x-500|≤5,由絕對(duì)值不等式的幾何意義可知:{x|495≤x≤505}.故為:{x|495≤x≤505}.22.長(zhǎng)方體的共頂點(diǎn)的三個(gè)側(cè)面面積分別為3,5,15,則它的體積為_(kāi)_____.答案:設(shè)長(zhǎng)方體過(guò)同一頂點(diǎn)的三條棱長(zhǎng)分別為a,b,c,∵從長(zhǎng)方體一個(gè)頂點(diǎn)出發(fā)的三個(gè)面的面積分別為3,5,15,∴a?b=3,a?c=5,b?c=15∴(a?b?c)2=152∴a?b?c=15即長(zhǎng)方體的體積為15,故為:15.23.如圖,花園中間是噴水池,噴水池周?chē)腁、B、C、D區(qū)域種植草皮,要求相鄰的區(qū)域種不同顏色的草皮,現(xiàn)有4種不同顏色的草皮可供選用,則共有______種不同的種植方法(以數(shù)字作答).答案:若AD相同,有4×(3+3×2)種種植方法,若AD不同,有4×3×(2+2×1)種種植方法∴共有4×(3+3×2)+4×3×(2+2×1)=36+48=84種不同方法.故為84.24.若直線(xiàn)l與直線(xiàn)2x+5y-1=0垂直,則直線(xiàn)l的方向向量為_(kāi)_____.答案:直線(xiàn)l與直線(xiàn)2x+5y-1=0垂直,所以直線(xiàn)l:5x-2y+k=0,所以直線(xiàn)l的方向向量為:(2,5).故為:(2,5)25.某次乒乓球比賽的決賽在甲乙兩名選手之間舉行,比賽采用五局三勝制,按以往比賽經(jīng)驗(yàn),甲勝乙的概率為23.
(1)求比賽三局甲獲勝的概率;
(2)求甲獲勝的概率;
(3)設(shè)甲比賽的次數(shù)為X,求X的數(shù)學(xué)期望.答案:記甲n局獲勝的概率為Pn,n=3,4,5,(1)比賽三局甲獲勝的概率是:P3=C33(23)3=827;(2)比賽四局甲獲勝的概率是:P4=C23(23)3
(13)=827;比賽五局甲獲勝的概率是:P5=C24(13)2(23)3=1681;甲獲勝的概率是:P3+P4+P5=6481.(3)記乙n局獲勝的概率為Pn′,n=3,4,5.P3′=C33(13)3=127,P4′=C23(13)3
(23)=227;P5′=C24(13)3(23)2=881;故甲比賽次數(shù)的分布列為:X345P(X)P3+P3′P4+P4′P5+P5′所以甲比賽次數(shù)的數(shù)學(xué)期望是:EX=3(127+827)+4(827+227)+5(1681+881
)=10727.26.下列圖形中不一定是平面圖形的是()
A.三角形
B.四邊相等的四邊形
C.梯形
D.平行四邊形答案:B27.已知a=(1,-2,4),b=(1,0,3),c=(0,0,2).求
(1)a?(b+c);
(2)4a-b+2c.答案:解(1)∵b+c=(1,0,5),∴a?(b+c)=1×1+(-2)×0+4×5=21.(2)4a-b+2c=(4,-8,16)-(1,0,3)+(0,0,4)=(3,-8,17).28.在△ABC中,已知A(2,3),B(8,-4),點(diǎn)G(2,-1)在中線(xiàn)AD上,且|AG|=2|GD|,則C的坐標(biāo)為_(kāi)_____.答案:設(shè)C(x,y),則D(8+x2,-4+y2),再由AG=2GD,得(0,-4)=2(4+x2,-2+y2),∴4+x=0,-2+y=-4,即C(-4,-2)故為:(-4,-2).29.在平面直角坐標(biāo)系中,雙曲線(xiàn)Γ的中心在原點(diǎn),它的一個(gè)焦點(diǎn)坐標(biāo)為(5,0),e1=(2,1)、e2=(2,-1)分別是兩條漸近線(xiàn)的方向向量.任取雙曲線(xiàn)Γ上的點(diǎn)P,若OP=ae1+be2(a、b∈R),則a、b滿(mǎn)足的一個(gè)等式是______.答案:因?yàn)閑1=(2,1)、e2=(2,-1)是漸進(jìn)線(xiàn)方向向量,所以雙曲線(xiàn)漸近線(xiàn)方程為y=±12x,又c=5,∴a=2,b=1雙曲線(xiàn)方程為x24-y2=1,OP=ae1+be2=(2a+2b,a-b),∴(2a+2b)24-(a-b)2=1,化簡(jiǎn)得4ab=1.故為4ab=1.30.已知兩組樣本數(shù)據(jù)x1,x2,…xn的平均數(shù)為h,y1,y2,…ym的平均數(shù)為k,則把兩組數(shù)據(jù)合并成一組以后,這組樣本的平均數(shù)為()
A.
B.
C.
D.答案:B31.用反證法證明命題“三角形的內(nèi)角至多有一個(gè)鈍角”時(shí),假設(shè)正確的是()
A.假設(shè)至少有一個(gè)鈍角
B.假設(shè)沒(méi)有一個(gè)鈍角
C.假設(shè)至少有兩個(gè)鈍角
D.假設(shè)沒(méi)有一個(gè)鈍角或至少有兩個(gè)鈍角答案:C32.管理人員從一池塘中撈出30條魚(yú)做上標(biāo)記,然后放回池塘,將帶標(biāo)記的魚(yú)完全混合于魚(yú)群中.10天后,再捕上50條,發(fā)現(xiàn)其中帶標(biāo)記的魚(yú)有2條.根據(jù)以上收據(jù)可以估計(jì)該池塘有______條魚(yú).答案:設(shè)該池塘中有x條魚(yú),由題設(shè)條件建立方程:30x=250,解得x=750.故為:750.33.已知集合A到B的映射f:x→y=2x+1,那么集合A中元素2在B中的象是()A.2B.5C.6D.8答案:∵x=2,∴y=2x+1則y=2×2+1=5,那么集合A中元素2在B中的象是5故選B.34.已知復(fù)數(shù)(m2-5m+6)+(m2-3m)i是純虛數(shù),則實(shí)數(shù)m=______.答案:當(dāng)m2-5m+6=0m2-3m≠0時(shí),即m=2或m=3m≠0且m≠3?m=2時(shí)復(fù)數(shù)z為純虛數(shù).故為:2.35.某學(xué)校準(zhǔn)備調(diào)查高三年級(jí)學(xué)生完成課后作業(yè)所需時(shí)間,采取了兩種抽樣調(diào)查的方式:第一種由學(xué)生會(huì)的同學(xué)隨機(jī)對(duì)24
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度校服設(shè)計(jì)與校園文化建設(shè)合作協(xié)議3篇
- 二零二五年度科技企業(yè)股權(quán)回購(gòu)擔(dān)保合同2篇
- 2025年現(xiàn)代小區(qū)車(chē)棚租賃與經(jīng)營(yíng)合作協(xié)議3篇
- 2025年新型托盤(pán)標(biāo)準(zhǔn)制定與應(yīng)用推廣合同3篇
- 2025年新型手機(jī)品牌代理銷(xiāo)售合同3篇
- 2025年旅游質(zhì)量監(jiān)控服務(wù)協(xié)議
- 2025版鋁合金門(mén)窗行業(yè)標(biāo)準(zhǔn)化生產(chǎn)合同4篇
- 二零二五年現(xiàn)代農(nóng)業(yè)合伙人分紅協(xié)議書(shū)3篇
- 2025年農(nóng)業(yè)產(chǎn)品加工廠合作農(nóng)產(chǎn)品加工廠建設(shè)合同
- 2025年蝦池承包養(yǎng)殖項(xiàng)目投資與合作協(xié)議5篇
- 常用靜脈藥物溶媒的選擇
- 2023-2024學(xué)年度人教版一年級(jí)語(yǔ)文上冊(cè)寒假作業(yè)
- 當(dāng)代西方文學(xué)理論知到智慧樹(shù)章節(jié)測(cè)試課后答案2024年秋武漢科技大學(xué)
- 2024年預(yù)制混凝土制品購(gòu)銷(xiāo)協(xié)議3篇
- 2024-2030年中國(guó)高端私人會(huì)所市場(chǎng)競(jìng)爭(zhēng)格局及投資經(jīng)營(yíng)管理分析報(bào)告
- GA/T 1003-2024銀行自助服務(wù)亭技術(shù)規(guī)范
- 《消防設(shè)備操作使用》培訓(xùn)
- 新交際英語(yǔ)(2024)一年級(jí)上冊(cè)Unit 1~6全冊(cè)教案
- 2024年度跨境電商平臺(tái)運(yùn)營(yíng)與孵化合同
- 2024年電動(dòng)汽車(chē)充電消費(fèi)者研究報(bào)告-2024-11-新能源
- 湖北省黃岡高級(jí)中學(xué)2025屆物理高一第一學(xué)期期末考試試題含解析
評(píng)論
0/150
提交評(píng)論