版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
長風(fēng)破浪會有時,直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年廣州科技貿(mào)易職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.若kxy-8x+9y-12=0表示兩條直線,則實數(shù)k的值及兩直線所成的角分別是()
A.8,60°
B.4,45°
C.6,90°
D.2,30°答案:C2.在直徑為4的圓內(nèi)接矩形中,最大的面積是()
A.4
B.2
C.6
D.8答案:D3.已知直線l1:y=kx+(k<0=被圓x2+y2=4截得的弦長為,則l1與直線l2:y=(2+)x的夾角的大小是()
A.30°
B.45°
C.60°
D.75°答案:B4.設(shè)直線l與平面α相交,且l的方向向量為a,α的法向量為n,若<a,n>=,則l與α所成的角為()
A.
B.
C.
D.答案:C5.某校為提高教學(xué)質(zhì)量進(jìn)行教改實驗,設(shè)有試驗班和對照班.經(jīng)過兩個月的教學(xué)試驗,進(jìn)行了一次檢測,試驗班與對照班成績統(tǒng)計如下的2×2列聯(lián)表所示(單位:人),則其中m=______,n=______.
80及80分以下80分以上合計試驗班321850對照班12m50合計4456n答案:由題意,18+m=56,50+50=n,∴m=38.n=100,故為38,010.6.在5件產(chǎn)品中,有3件一等品,2件二等品.從中任取2件.那么以710為概率的事件是()A.都不是一等品B.至少有一件二等品C.恰有一件一等品D.至少有一件一等品答案:5件產(chǎn)品中,有3件一等品和2件二等品,從中任取2件,從5件產(chǎn)品中任取2件,共有C52=10種結(jié)果,∵“任取的2件產(chǎn)品都不是一等品”只有1種情況,其概率是110;“任取的2件產(chǎn)品中至少有一件二等品”有C31C21+1種情況,其概率是710;“任取的2件產(chǎn)品中恰有一件一等品”有C31C21種情況,其概率是610;“任取的2件產(chǎn)品在至少有一件一等品”有C31C21+C32種情況,其概率是910;∴以710為概率的事件是“至少有一件二等品”.故為B.7.直三棱柱ABC-A1B1C1中,若CA=a
CB=b
CC1=c
則A1B=()A.a(chǎn)+b-cB.a(chǎn)-b+cC.-a+b+cD.-a+b-c答案:A1B=A1A+AB=-CC1+CB-CA=-a+b-c故選D.8.已知二階矩陣A=2ab0屬于特征值-1的一個特征向量為1-3,求矩陣A的逆矩陣.答案:由矩陣A屬于特征值-1的一個特征向量為α1=1-3,可得2ab01-3=-1-3,得2-3a=-1b=3即a=1,b=3;
…(3分)解得A=2130,…(8分)∴A逆矩陣是A-1=dad-bc-bad-bc-cad-bcaad-bc=0131-23.9.已知正三角形ABC的邊長為a,求△ABC的直觀圖△A′B′C′的面積.答案:如圖①、②所示的實際圖形和直觀圖.由②可知,A′B′=AB=a,O′C′=12OC=34a,在圖②中作C′D′⊥A′B′于D′,則C′D′=22O′C′=68a.∴S△A′B′C′=12A′B′?C′D′=12×a×68a=616a2.10.在曲線(t為參數(shù))上的點是()
A.(1,-1)
B.(4,21)
C.(7,89)
D.答案:A11.已知向量,滿足:||=3,||=5,且=λ,則實數(shù)λ=()
A.
B.
C.±
D.±答案:C12.給出下列問題:
(1)求面積為1的正三角形的周長;
(2)求鍵盤所輸入的三個數(shù)的算術(shù)平均數(shù);
(3)求鍵盤所輸入兩個數(shù)的最小數(shù);
(4)求函數(shù)f(x)=2xx2(x≥3)(x<3)當(dāng)自變量取相應(yīng)值時的函數(shù)值.
其中不需要用條件語句描述的算法的問題有()A.1個B.2個C.3個D.4個答案:(1)求面積為1的正三角形的周長用順序結(jié)構(gòu)即可,故不需要用條件語句描述;(2)求鍵盤所輸入的三個數(shù)的算術(shù)平均數(shù)用順序結(jié)構(gòu)即可解決問題,不需要用條件語句描述;(3)求鍵盤所輸入兩個數(shù)的最小數(shù),由于要作出判斷,找出最小數(shù),故本問題的解決要用到條件語句描述;(4)求函數(shù)f(x)=2xx2(x≥3)(x<3)當(dāng)自變量取相應(yīng)值時的函數(shù)值,由于此函數(shù)是一個分段函數(shù),所以要用條件結(jié)構(gòu)選擇相應(yīng)的函數(shù)解析式,需要用條件語句描述.綜上,(3)(4)兩個問題要用到條件語句描述,(1),(2)不需要用條件語句描述故選B13.如果隨機(jī)變量ξ~N(0,σ2),且P(-2<ξ≤0)=0.4,則P(ξ>2)等于()
A.0.1
B.0.2
C.0.3
D.0.4答案:A14.將一個總體分為A、B、C三層,其個體數(shù)之比為5:3:2,若用分層抽樣的方法抽取容量為180的樣本,則應(yīng)從C中抽取樣本的個數(shù)為______個.答案:由分層抽樣的定義可得應(yīng)從B中抽取的個體數(shù)為180×25+3+2=36,故為:36.15.某制藥廠為了縮短培養(yǎng)時間,決定優(yōu)選培養(yǎng)溫度,試驗范圍定為29℃至50℃,現(xiàn)用分?jǐn)?shù)法確定最佳溫度,設(shè)第1,2,3次試驗的溫度分別為x1,x2,x3,若第2個試點比第1個試點好,則x3的值為(
)。答案:34℃或45℃16.知x、y、z均為實數(shù),
(1)若x+y+z=1,求證:++≤3;
(2)若x+2y+3z=6,求x2+y2+z2的最小值.答案:(1)證明略(2)x2+y2+z2的最小值為解析:(1)證明
因為(++)2≤(12+12+12)(3x+1+3y+2+3z+3)=27.所以++≤3.
7分(2)解
因為(12+22+32)(x2+y2+z2)≥(x+2y+3z)2=36,即14(x2+y2+z2)≥36,所以x2+y2+z2的最小值為.
14分17.已知a,b,c∈R+,且a+b+c=1,求3a+1+3b+1+3c+1的最大值.答案:根據(jù)柯西不等式,可得(3a+1+3b+1+3c+1)2=(1?3a+1+1?3b+1+1?3c+1)2≤(12+12+12)[(3a+1)2+(3b+1)2+(3c+1)2]=3[3(a+b+c)+3]=18當(dāng)且僅當(dāng)3a+1=3b+1=3c+1,即a=b=c=13時,(3a+1+3b+1+3c+1)2的最大值為18因此,3a+1+3b+1+3c+1的最大值為18=3218.在對吸煙與患肺病這兩個分類變量的計算中,下列說法正確的是()
A.若隨機(jī)變量K2的觀測值k>6.635,我們有99%的把握說明吸煙與患肺病有關(guān),則若某人吸煙,那么他有99%的可能患有肺病
B.若由隨機(jī)變量求出有99%的把握說吸煙與患肺病有關(guān),則在100個吸煙者中必有99個人患有肺病
C.若由隨機(jī)變量求出有95%的把握說吸煙與患肺病有關(guān),那么有5%的可能性使得推斷錯誤
D.以上說法均不正確答案:D19.等于()
A.a(chǎn)16
B.a(chǎn)8
C.a(chǎn)4
D.a(chǎn)2答案:C20.設(shè)集合A={x|x<1,x∈R},B={x|1x>1,x∈R},則下列圖形能表示A與B關(guān)系的是()A.
B.
C.
D.
答案:B={x|1x>1}={x|0<x<1},所以B?A.所以對應(yīng)的關(guān)系選A.故選A.21.已知0<α<π2,方程x2sinα+y2cosα=1表示焦點在y軸上的橢圓,則α的取值范圍______.答案:方程x2sinα+y2cosα=1化成標(biāo)準(zhǔn)形式得:x21sinα+y21cosα=1.∵方程表示焦點在y軸上的橢圓,∴1cosα>1sinα>0,解之得sinα>cosα>0∵0<α<π2,∴π4<α<π2,即α的取值范圍是(π4,π2)故為:(π4,π2)22.設(shè)四邊形ABCD中,有且,則這個四邊形是()
A.平行四邊形
B.矩形
C.等腰梯形
D.菱形答案:C23.證明不等式的最適合的方法是()
A.綜合法
B.分析法
C.間接證法
D.合情推理法答案:B24.如圖所示,AF、DE分別是⊙O、⊙O1的直徑,AD與兩圓所在的平面均垂直,AD=8.BC是⊙O的直徑,AB=AC=6,
OE∥AD.
(1)求二面角B-AD-F的大??;
(2)求直線BD與EF所成的角的余弦值.答案:(1)二面角B—AD—F的大小為45°(2)直線BD與EF所成的角的余弦值為解析:(1)∵AD與兩圓所在的平面均垂直,∴AD⊥AB,AD⊥AF,故∠BAF是二面角B—AD—F的平面角.依題意可知,ABFC是正方形,∴∠BAF=45°.即二面角B—AD—F的大小為45°;(2)以O(shè)為原點,CB、AF、OE所在直線為坐標(biāo)軸,建立空間直角坐標(biāo)系(如圖所示),則O(0,0,0),A(0,-3,0),B(3,0,0),D(0,-3,8),E(0,0,8),F(xiàn)(0,3,0),∴=(-3,-3,8),=(0,3,-8).cos〈,〉=
==-.設(shè)異面直線BD與EF所成角為,則cos=|cos〈,〉|=.即直線BD與EF所成的角的余弦值為.25.用0,1,2,3組成沒有重復(fù)數(shù)字的四位數(shù),其中奇數(shù)有()
A.8個
B.10個
C.18個
D.24個答案:A26.巳知橢圓{xn}與{yn}的中心在坐標(biāo)原點,長軸在x軸上,離心率為32,且G上一點到G的兩個焦點的距離之和為12,則橢圓G的方程為______.答案:由題設(shè)知e=32,2a=12,∴a=6,b=3,∴所求橢圓方程為x236+y29=1.:x236+y29=1.27.若點P分向量AB的比為34,則點A分向量BP的比為()A.-34B.34C.-73D.73答案:由題意可得APPB=|AP||PB|=34,故
A分BP的比為BAAP=-|BA||AP|=-4+33=-73,故選C.28.一個單位有職工800人,其中具有高級職稱的160人,具有中級職稱的320人,具有初級職稱的200人,其余人員120人,為了解職工收入情況,決定采用分層抽樣的方法從中抽取樣本.若樣本中具有初級職稱的職工為10人,則樣本容量為()
A.10
B.20
C.40
D.50答案:C29.若一個圓錐的軸截面是邊長為4cm的等邊三角形,則這個圓錐的側(cè)面積為______cm2.答案:如圖所示:∵軸截面是邊長為4等邊三角形,∴OB=2,PB=4.圓錐的側(cè)面積S=π×2×4=8πcm2.故為8π.30.若數(shù)據(jù)x1,x2,x3…xn的平均數(shù).x=5,方差σ2=2,則數(shù)據(jù)3x1+1,3x2+1,3x3+1…,3xn+1的方差為______.答案:∵x1,x2,x3,…,xn的方差為2,∴3x1+1,3x2+1,3x3+1,…,3xn+1的方差是32×2=18.故為:18.31.已知向量表示“向東航行1km”,向量表示“向南航行1km”,則向量表示()
A向東南航行km
B.向東南航行2km
C.向東北航行km
D.向東北航行2km答案:A32.若雙曲線的漸近線方程為y=±3x,它的一個焦點是(10,0),則雙曲線的方程是______.答案:因為雙曲線的漸近線方程為y=±3x,則設(shè)雙曲線的方程是x2-y29=λ,又它的一個焦點是(10,0)故λ+9λ=10∴λ=1,x2-y29=1故為:x2-y29=133.如圖所示,有兩個獨立的轉(zhuǎn)盤(A)、(B),其中三個扇形區(qū)域的圓心角分別為60°、120°、180°.用這兩個轉(zhuǎn)盤玩游戲,規(guī)則是:依次隨機(jī)轉(zhuǎn)動兩個轉(zhuǎn)盤再隨機(jī)停下(指針固定不動,當(dāng)指針恰好落在分界線時,則這次轉(zhuǎn)動無效,重新開始)為一次游戲,記轉(zhuǎn)盤(A)指針?biāo)鶎Φ臄?shù)為X轉(zhuǎn)盤(B)指針對的數(shù)為Y設(shè)X+Yξ,每次游戲得到的獎勵分為ξ分.
(1)求X<2且Y>1時的概率
(2)某人玩12次游戲,求他平均可以得到多少獎勵分?答案:(1)由幾何概型知P(x=1)=16,P(x=2)=13,P(x=3)=12;
P(y=1)=13,P(y=2)=12,P(y=3)=16.則P(x<2)=P(x=1)=16,P(y>1)=p(y=2)+P(y=3)=23,P(x<2且y>1)=P(x<2)?P(y>1)=19.(2)ξ的取值范圍為2,3,4,6.P(ξ=2)=P(x=1)?P(y=1)=16×13=118;P(ξ=3)=P(x=1)?P(y=2)+P(x=2)?P(y=1)=16×12+13×13=736;P(ξ=4)=P(x=1)?P(y=3)+P(x=2)?P(y=2)+P(x=3)?P(y=1)=16×16+13×12+12×13=1336;P(ξ=5)=P(x=2)P(y=3)+P(x=3)P(y=2)=13×16+12×12=1136;P(ξ=6)=P(x=3)?P(y=3)=12×16=112.其分布為:ξ23456P11873613361136112他平均每次可得到的獎勵分為Eξ=2×118+3×736+4×1336+5×1136+6×112=256,所以,他玩12次平均可以得到的獎勵分為12×Eξ=50.34.如圖,已知點P在正方體ABCD-A′B′C′D′的對角線BD′上,∠PDA=60°.
(Ⅰ)求DP與CC′所成角的大?。?/p>
(Ⅱ)求DP與平面AA′D′D所成角的大?。鸢福悍椒ㄒ唬喝鐖D,以D為原點,DA為單位長建立空間直角坐標(biāo)系D-xyz.則DA=(1,0,0),CC′=(0,0,1).連接BD,B'D'.在平面BB'D'D中,延長DP交B'D'于H.設(shè)DH=(m,m,1)(m>0),由已知<DH,DA>=60°,由DA?DH=|DA||DH|cos<DA,DH>可得2m=2m2+1.解得m=22,所以DH=(22,22,1).(4分)(Ⅰ)因為cos<DH,CC′>=22×0+22×0+1×11×2=22,所以<DH,CC′>=45°.即DP與CC'所成的角為45°.(8分)(Ⅱ)平面AA'D'D的一個法向量是DC=(0,1,0).因為cos<DH,DC>=22×0+22×1+1×01×2=12,所以<DH,DC>=60°.可得DP與平面AA'D'D所成的角為30°.(12分)方法二:如圖,以D為原點,DA為單位長建立空間直角坐標(biāo)系D-xyz.則DA=(1,0,0),CC′=(0,0,1),BD′=(-1,-1,1).設(shè)P(x,y,z)則BP=λBD′,∴(x-1,y-1,z)=(-λ,-λ,λ)∴x=1-λy=1-λz=λ,則DP=(1-λ,1-λ,λ),由已知,<DP,DA>=60°,∴λ2-4λ+2=0,解得λ=2-2,∴DP=(2-1,2-1,2-2)(4分)(Ⅰ)因為cos<DP,CC′>=2-22(2-1)=22,所以<DP,CC′>=45°.即DP與CC'所成的角為45°.(8分)(Ⅱ)平面AA'D'D的一個法向量是DC=(0,1,0).因為cos<DP,DC>=2-12(2-1)=12,所以<DP,DC>=60°.可得DP與平面AA'D'D所成的角為30°.(12分)35.在空間直角坐標(biāo)系中,已知A,B兩點的坐標(biāo)分別是A(2,3,5),B(3,1,4),則這兩點間的距離|AB|=______.答案:∵A,B兩點的坐標(biāo)分別是A(2,3,5),B(3,1,4),∴|AB|=(3-2)2+(1-3)2+(4-5)2,=1+4+1=6,故為:6.36.同時擲兩顆骰子,得到的點數(shù)和為4的概率是______.答案:同時擲兩顆骰子得到的點數(shù)共有36種情況,即(1,1)(1,2)(1,3)(1,4)(1,5)(1,6),(2,1)(2,2)(2,3)(2,4)(2,5)(2,6),(3,1)(3,2)(3,3)(3,4)(3,5)(3,6),(4,1)(4,2)(4,3)(4,4)(4,5)(4,6),(5,1)(5,2)(5,3)(5,4)(5,5)(5,6),(6,1)(6,2)(6,3)(6,4)(6,5)(6,6),而和為4的情況數(shù)有3種,即(1,3)(2,2)(3,1)所以所求概率為336=112,故為:11237.以拋物線y2=2px(p>0)的焦半徑|PF|為直徑的圓與y軸位置關(guān)系是______.答案:根據(jù)拋物線定義可知|PF|=p2,而圓的半徑為p2,圓心為(p2,0),|PF|正好等于所求圓的半徑,進(jìn)而可推斷圓與y軸位置關(guān)系是相切.38.經(jīng)過原點,圓心在x軸的負(fù)半軸上,半徑等于2的圓的方程是______.答案:∵圓過原點,圓心在x軸的負(fù)半軸上,∴圓心的橫坐標(biāo)的相反數(shù)等于圓的半徑,又∵半徑r=2,∴圓心坐標(biāo)為(-2,0),由此可得所求圓的方程為(x+2)2+y2=2.故為:(x+2)2+y2=239.拋物線y=3x2的焦點坐標(biāo)是______.答案:化為標(biāo)準(zhǔn)方程為x2=13y,∴2p=13,∴p2=
112,∴焦點坐標(biāo)是(0,112).故為(0,112)40.函數(shù)y=(43)x,x∈N+是()A.增函數(shù)B.減函數(shù)C.奇函數(shù)D.偶函數(shù)答案:由正整數(shù)指數(shù)函數(shù)不具有奇偶性,可排除C、D;因為函數(shù)y=(43)x,x∈N+的底數(shù)43大于1,所以此函數(shù)是增函數(shù).故選A.41.拋物線y2=4x,O為坐標(biāo)原點,A,B為拋物線上兩個動點,且OA⊥OB,當(dāng)直線AB的傾斜角為45°時,△AOB的面積為______.答案:設(shè)直線AB的方程為y=x-m,代入拋物線聯(lián)立得x2-(2m+4)x+m2=0,則x1+x2=2m+4,x1x2=m2,∴|x1-x2|=16m+16∵三角形的面積為S△AOB=|12my1-12my2|=12m(|x1-x2|)=12m16m+16;又因為OA⊥OB,設(shè)A(x1,2x1),B(x2,-2x2)所以2x1x1?-2x2x2=-1,求的m=4,代入上式可得S△AOB=12m16m+16=12×4×64+16=85故為:8542.直線y=x-1的傾斜角是()
A.30°
B.120°
C.60°
D.150°答案:A43.命題“零向量與任意向量共線”的否定為______.答案:命題“零向量與任意向量共線”即“任意向量與零向量共線”,是全稱命題,其否定為特稱命題:“有的向量與零向量不共線”.故為:“有的向量與零向量不共線”.44.已知a,b,c是三條直線,且a∥b,a與c的夾角為θ,那么b與c夾角是______.答案:∵a∥b,∴b與c夾角等于a與c的夾角又∵a與c的夾角為θ∴b與c夾角也為θ故為:θ45.已知向量a與向量b,|a|=2,|b|=3,a、b的夾角為60°,當(dāng)1≤m≤2,0≤n≤2時,|ma+nb|的最大值為______.答案:∵|a|=2,|b|=3,a、b的夾角為60°,∴|ma+nb|2=m2a2+2mna?b+n2b2=4m2+2mn×2×3×cos60°+9n2=4m2+6mn+9n2,∵1≤m≤2,0≤n≤2,∴當(dāng)m=2且n=2時,|ma+nb|2取到最大值,即|ma+nb|2max=100,∴,|ma+nb|的最大值為10.故為:10.46.某航空公司經(jīng)營A,B,C,D這四個城市之間的客運(yùn)業(yè)務(wù),它們之間的直線距離的部分機(jī)票價格如下:AB為2000元;AC為1600元;AD為2500元;CD為900元;BC為1200元,若這家公司規(guī)定的機(jī)票價格與往返城市間的直線距離成正比,則BD間直線距離的票價為(設(shè)這四個城在同一水平面上)()
A.1500元
B.1400元
C.1200元
D.1000元答案:A47.如圖,在等邊△ABC中,以AB為直徑的⊙O與BC相交于點D,連接AD,則∠DAC的度數(shù)為
______度.答案:∵AB是⊙O的直徑,∴∠ADB=90°,即AD⊥BC;又∵△ABC是等邊三角形,∴DA平分∠BAC,即∠DAC=12∠BAC=30°.故為:30.48.如圖把橢圓x225+y216=1的長軸AB分成8分,過每個分點作x軸的垂線交橢圓的上半部分于P1,P2,…P7七個點,F(xiàn)是橢圓的一個焦點,則|P1F|+|P2F|+…+|P7F|=______.答案:如圖,把橢圓x225+y216=1的長軸AB分成8等份,過每個分點作x軸的垂線交橢圓的上半部分于P1,P2,P3,P4,P5,P6,P7七個點,F(xiàn)是橢圓的一個焦點,則根據(jù)橢圓的對稱性知,|P1F1|+|P7F1|=|P1F1|+|P1F2|=2a,同理其余兩對的和也是2a,又|P4F1|=a,∴|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|+|P7F|=7a=35,故為35.49.如圖所示,在Rt△ABC內(nèi)有一內(nèi)接正方形,它的一條邊在斜邊BC上,設(shè)AB=a,∠ABC=θ
(1)求△ABC的面積f(θ)與正方形面積g(θ);
(2)當(dāng)θ變化時,求f(θ)g(θ)的最小值.答案:(1)由題得:AC=atanθ∴f(θ)=12a2tanθ(0<θ<π2)
設(shè)正方形的邊長為x,則BG=xsinθ,由幾何關(guān)系知:∠AGD=θ∴AG=xcosθ
由BG+AG=a?xsinθ+xcosθ=a?x=asinθ1+sinθcosθ∴g(θ)=a2sin2θ(1+sinθcosθ)2(0<θ<π2)(2)f(θ)g(θ)=(1+sinθcoθ)22sinθcosθ=1+1sin2θ+sin2θ4
令:t=sin2θ∵0<θ<π2∴t∈(0,1]∴y=1+1t+t4=1+14(t+t4)∵函數(shù)y=1+14(t+t4)在(0,1]遞減∴ymin=94(當(dāng)且僅當(dāng)t=1即θ=π4時成立)∴當(dāng)θ=π4時,f(θ)g(θ)的最小值為94.50.|a|=4,a與b的夾角為30°,則a在b方向上的投影為______.答案:a在b方向上的投影為|a|cos30°=4×32=23故為:23第2卷一.綜合題(共50題)1.在平面直角坐標(biāo)系xOy中,已知圓C:x=5cosθ-1y=5sinθ+2(θ為參數(shù))和直線l:x=4t+6y=-3t-2(t為參數(shù)),則直線l與圓C相交所得的弦長等于______.答案:∵在平面直角坐標(biāo)系xOy中,已知圓C:x=5cosθ-1y=5sinθ+2(θ為參數(shù)),∴(x+1)2+(y-2)2=25,∴圓心為(-1,2),半徑為5,∵直線l:x=4t+6y=-3t-2(t為參數(shù)),∴3x+4y-10=0,∴圓心到直線l的距離d=|-3+8-10|5=1,∴直線l與圓C相交所得的弦長=2×52-1=46.故為46.2.已知F1,F(xiàn)2為橢圓x2a2+y2b2=1(a>b>0)的兩個焦點,過F2作橢圓的弦AB,若△AF1B的周長為16,橢圓的離心率為e=32,則橢圓的方程為______.答案:根據(jù)橢圓的定義,△AF1B的周長為16可知,4a=16,∴a=4,∵e=32,∴c=23,∴b=2,∴橢圓的方程為x216+y24=1,故為x216+y24=13.拋物線y2=4x上一點M與該拋物線的焦點F的距離|MF|=4,則點M的橫坐標(biāo)x=______.答案:∵拋物線y2=4x=2px,∴p=2,由拋物線定義可知,拋物線上任一點到焦點的距離與到準(zhǔn)線的距離是相等的,∴|MF|=4=x+p2=4,∴x=3,故為:3.4.直線2x+y-3=0與直線3x+9y+1=0的夾角是()
A.
B.a(chǎn)rctan2
C.
D.答案:C5.在一個倒置的正三棱錐容器內(nèi)放入一個鋼球,鋼球恰與棱錐的四個面都接觸,過棱錐的一條側(cè)棱和高作截面,正確的截面圖形是()A.
B.
C.
D.
答案:由題意作出圖形如圖:SO⊥平面ABC,SA與SO的平面與平面SBC垂直,球與平面SBC的切點在SD上,球與側(cè)棱SA沒有公共點所以正確的截面圖形為B選項故選B.6.在同一坐標(biāo)系中,y=ax與y=a+x表示正確的是()A.
B.
C.
D.
答案:由y=x+a得斜率為1排除C,由y=ax與y=x+a中a同號知若y=ax遞增,則y=x+a與y軸的交點在y軸的正半軸上,由此排除B;若y=ax遞減,則y=x+a與y軸的交點在y軸的負(fù)半軸上,由此排除D,知A是正確的;故選A.7.方程組的解集是[
]A.{5,1}
B.{1,5}
C.{(5,1)}
D.{(1,5)}答案:C8.直線y=3的一個單位法向量是______.答案:直線y=3的方向向量是(a,0)(a≠0),不妨?。?,0)設(shè)直線y=3的法向量為n=(x,y)∴(x,y)?(1,0)=0∴x=0∴直線y=3的一個單位法向量是(0,1)故為:(0,1)9.在正方體ABCD-A1B1C1D1中,若E為A1C1中點,則直線CE垂直于()A.ACB.BDC.A1DD.A1A答案:以A為原點,AB、AD、AA1所在直線分別為x,y,z軸建空間直角坐標(biāo)系,設(shè)正方體棱長為1,則A(0,0,0),C(1,1,0),B(1,0,0),D(0,1,0),A1(0,0,1),E(12,12,1),∴CE=(-12,-12,1),AC=(1,1,0),BD=(-1,1,0),A1D=(0,1,-1),A1A=(0,0,-1),顯然CE?BD=12-12+0=0,∴CE⊥BD,即CE⊥BD.
故選B.10.下列命題:
①用相關(guān)系數(shù)r來刻畫回歸的效果時,r的值越大,說明模型擬合的效果越好;
②對分類變量X與Y的隨機(jī)變量的K2觀測值來說,K2越小,“X與Y有關(guān)系”可信程度越大;
③兩個隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對值越接近1;
其中正確命題的序號是
______.(寫出所有正確命題的序號)答案:①是由于r可能是負(fù)值,要改為|r|的值越大,說明模型擬合的效果越好,故①錯誤,②對分類變量X與Y的隨機(jī)變量的K2觀測值來說,K2越大,“X與Y有關(guān)系”可信程度越大;故②正確③兩個隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對值越接近1;故③正確,故為:③11.過點(0,2)且與圓x2+y2=4只有一個交點的直線方程是______.答案:∵圓x2+y2=4的圓心是O(0,0),半徑r=2,點(0,2)到圓心O(0,0)的距離是d=0+4=2=r,∴點(0,2)在圓x2+y2=4上,∴過點(0,2)且與圓x2+y2=4只有一個交點的直線方程是0x+2y=4,即y=2.故為:y=2.12.己知集合A={1,2,3,k},B={4,7,a4,a2+3a},且a∈N*,x∈A,y∈B,使B中元素y=3x+1和A中的元素x對應(yīng),則a=______,k=______.答案:若x∈A,y∈B,使B中元素y=3x+1和A中的元素x對應(yīng),則當(dāng)x=1時,y=4;當(dāng)x=2時,y=7;當(dāng)x=3時,y=10;當(dāng)x=k時,y=3k+1;又由a∈N*,∴a4≠10,則a2+3a=10,a4=3k+1解得a=2,k=5故為:2,513.若雙曲線的漸近線方程為y=±34x,則雙曲線的離心率為______.答案:由題意可得,當(dāng)焦點在x軸上時,ba=34,∴ca=a2+b2a=a2+(3a4)2a=54.當(dāng)焦點在y軸上時,ab=34,∴ca=a2+b2a=a2+(4a3)2a=53,故為:53
或54.14.命題“所有能被2整除的數(shù)都是偶數(shù)”的否定
是()
A.所有不能被2整除的整數(shù)都是偶數(shù)
B.所有能被2整除的整數(shù)都不是偶數(shù)
C.存在一個不能被2整除的整數(shù)是偶數(shù)
D.存在一個能被2整除的整數(shù)不是偶數(shù)答案:D15.①點P在△ABC所在的平面內(nèi),且②點P為△ABC內(nèi)的一點,且使得取得最小值;③點P是△ABC所在平面內(nèi)一點,且,上述三個點P中,是△ABC的重心的有()
A.0個
B.1個
C.2個
D.3個答案:D16.在(1+2x)5的展開式中,x2的系數(shù)等于______.(用數(shù)字作答)答案:由于(1+2x)5的展開式的通項公式為Tr+1=Cr5?(2x)r,令r=2求得x2的系數(shù)等于C25×22=40,故為40.17.若根據(jù)10名兒童的年齡
x(歲)和體重
y(㎏)數(shù)據(jù)用最小二乘法得到用年齡預(yù)報體重的回歸方程是
y=2x+7,已知這10名兒童的年齡分別是
2、3、3、5、2、6、7、3、4、5,則這10名兒童的平均體重是()
A.17㎏
B.16㎏
C.15㎏
D.14㎏答案:C18.在吸煙與患肺病這兩個分類變量的計算中,“若x2的觀測值為6.635,我們有99%的把握認(rèn)為吸煙與患肺病有關(guān)系”這句話的意思是指()
A.在100個吸煙的人中,必有99個人患肺病
B.有1%的可能性認(rèn)為推理出現(xiàn)錯誤
C.若某人吸煙,則他有99%的可能性患有肺病
D.若某人患肺病,則99%是因為吸煙答案:B19.學(xué)校成員、教師、后勤人員、理科教師、文科教師的結(jié)構(gòu)圖正確的是()
A.
B.
C.
D.
答案:A20.如圖,⊙O與⊙O′交于
A,B,⊙O的弦AC與⊙O′相切于點A,⊙O′的弦AD與⊙O相切于A點,則下列結(jié)論中正確的是()
A.∠1>∠2
B.∠1=∠2
C.∠1<∠2
D.無法確定
答案:B21.在四面體O-ABC中,OA=a,OB=b,OC=c,D為BC的中點,E為AD的中點,則OE可表示為(用a,b、c表示).
()A.12a+14b+14cB.12a+13b-12cC.13a+14b+14cD.13a-14b+14c答案:OE=OA+12AD=OA+12×12(AB+AC)=OA+14×(OB-OA+OC-OA)PD.CD+BC.AD+CA.BD=12OA+14OB+14OC=12a+14b+14c.故選A.22.已知曲線C的極坐標(biāo)方程是ρ=4cosθ.以極點為平面直角坐標(biāo)系的原點,極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線l的參數(shù)方程是:x=22t+1y=22t,求直線l與曲線C相交所成的弦的弦長.答案:曲線C的極坐標(biāo)方程是ρ=4cosθ化為直角坐標(biāo)方程為x2+y2-4x=0,即(x-2)2+y2=4直線l的參數(shù)方程x=22t+1y=22t,化為普通方程為x-y-1=0,曲線C的圓心(2,0)到直線l的距離為12=22所以直線l與曲線C相交所成的弦的弦長24-12=14.23.對某種電子元件進(jìn)行壽命跟蹤調(diào)查,所得樣本頻率分布直方圖如圖,由圖可知:一批電子元件中,壽命在100~300小時的電子元件的數(shù)量與壽命在300~600小時的電子元件的數(shù)量的比大約是()A.12B.13C.14D.16答案:由于已知的頻率分布直方圖中組距為100,壽命在100~300小時的電子元件對應(yīng)的矩形的高分別為:12000,32000則壽命在100~300小時的電子元件的頻率為:100?(12000+32000)=0.2壽命在300~600小時的電子元件對應(yīng)的矩形的高分別為:1400,1250,32000則壽命在300~600小時子元件的頻率為:100?(1400+1250+32000)=0.8則壽命在100~300小時的電子元件的數(shù)量與壽命在300~600小時的電子元件的數(shù)量的比大約是0.2:0.8=14故選C24.已知橢圓C:x2a2+y2b2=1(a>b>0)的兩個焦點分別為F1(-1,0),F(xiàn)2(1,0),且橢圓C經(jīng)過點P(43,13).
(I)求橢圓C的離心率:
(II)設(shè)過點A(0,2)的直線l與橢圓C交于M,N兩點,點Q是線段MN上的點,且2|AQ|2=1|AM|2+1|AN|2,求點Q的軌跡方程.答案:(I)∵橢圓C:x2a2+y2b2=1(a>b>0)的兩個焦點分別為F1(-1,0),F(xiàn)2(1,0),且橢圓C經(jīng)過點P(43,13).∴c=1,2a=PF1+PF2=(43+1)2+19+(43-1)2+19=22,即a=2∴橢圓的離心率e=ca=12=22…4分(II)由(I)知,橢圓C的方程為x22+y2=1,設(shè)點Q的坐標(biāo)為(x,y)(1)當(dāng)直線l與x軸垂直時,直線l與橢圓C交于(0,1)、(0,-1)兩點,此時點Q的坐標(biāo)為(0,2-355)(2)當(dāng)直線l與x軸不垂直時,可設(shè)其方程為y=kx+2,因為M,N在直線l上,可設(shè)點M,N的坐標(biāo)分別為(x1,kx1+2),(x2,kx2+2),則|AM|2=(1+k2)x1
2,|AN|2=(1+k2)x2
2,又|AQ|2=(1+k2)x2,2|AQ|2=1|AM|2+1|AN|2∴2(1+k2)x2=1(1+k2)x1
2+1(1+k2)x2
2,即2x2=1x1
2+1x2
2=(x1+x2)2-2x1x2x1
2x2
2…①將y=kx+2代入x22+y2=1中,得(2k2+1)x2+8kx+6=0…②由△=(8k)2-24(2k2+1)>0,得k2>32由②知x1+x2=-8k2k2+1,x1x2=62k2+1,代入①中化簡得x2=1810k2-3…③因為點Q在直線y=kx+2上,所以k=y-2x,代入③中并化簡得10(y-2)2-3x2=18由③及k2>32可知0<x2<32,即x∈(-62,0)∪(0,62)由題意,Q(x,y)在橢圓C內(nèi),所以-1≤y≤1,又由10(y-2)2-3x2=18得(y-2)2∈[95,94)且-1≤y≤1,則y∈(12,2-355)所以,點Q的軌跡方程為10(y-2)2-3x2=18,其中x∈(-62,62),y∈(12,2-355)…13分25.如果過點A(x,4)和(-2,x)的直線的斜率等于1,那么x=()A.4B.1C.1或3D.1或4答案:由于直線的斜率等于1,故1=4-xx-(-2),解得x=1故選B26.如圖所示,正四面體V—ABC的高VD的中點為O,VC的中點為M.
(1)求證:AO、BO、CO兩兩垂直;
(2)求〈,〉.答案:(1)證明略(2)45°解析:(1)
設(shè)=a,=b,=c,正四面體的棱長為1,則=(a+b+c),=(b+c-5a),=(a+c-5b),=(a+b-5c)∴·=(b+c-5a)·(a+c-5b)=(18a·b-9|a|2)=(18×1×1·cos60°-9)=0.∴⊥,∴AO⊥BO,同理⊥,BO⊥CO,∴AO、BO、CO兩兩垂直.(2)
=+=-(a+b+c)+=(-2a-2b+c).∴||==,||==,·=(-2a-2b+c)·(b+c-5a)=,∴cos〈,〉==,∵〈,〉∈(0,),∴〈,〉=45°.27.(選做題)(幾何證明選講選做題)如圖,直角三角形ABC中,∠B=90°,AB=4,以BC為直徑的圓交AC邊于點D,AD=2,則∠C的大小為______.答案:∵∠B=90°,AB=4,BC為圓的直徑∴AB與圓相切,由切割線定理得,AB2=AD?AC∴AC=8故∠C=30°故為:30°28.已知雙曲線x2-y22=1,經(jīng)過點M(1,1)能否作一條直線l,使直線l與雙曲線交于A、B,且M是線段AB的中點,若存在這樣的直線l,求出它的方程;若不存在,說明理由.答案:設(shè)過點M(1,1)的直線方程為y=k(x-1)+1或x=1(1)當(dāng)k存在時有y=k(x-1)+1x2
-y22=1得(2-k2)x2+(2k2-2k)x-k2+2k-3=0
(1)當(dāng)直線與雙曲線相交于兩個不同點,則必有△=(2k2-2k)2-4(2-k2)(-k2+2k-3)>0,k<32
又方程(1)的兩個不同的根是兩交點A、B的橫坐標(biāo)∴x1+x2=2(k-k2)2-k2
又M(1,1)為線段AB的中點∴x1+x22=1
即k-k22-k2=1
k=2
∴k=2,使2-k2≠0但使△<0因此當(dāng)k=2時,方程(1)無實數(shù)解故過點m(1,1)與雙曲線交于兩點A、B且M為線段AB中點的直線不存在.(2)當(dāng)x=1時,直線經(jīng)過點M但不滿足條件,綜上,符合條件的直線l不存在29.設(shè),,,則P,Q,R的大小順序是(
)
A.P>Q>R
B.P>R>Q
C.Q>P>R
D.Q>R>P答案:B30.已知函數(shù)f(x)=2x,x≤1log13x,x>1,若f(a)=2,則a=______.答案:當(dāng)a≤1時y=2x∴2a=2∴a=1當(dāng)a>1時y=log13x∴2=loga13∴a=19不成立所以a=1故為:131.(理)下列以t為參數(shù)的參數(shù)方程中表示焦點在y軸上的橢圓的是()
A.
B.(a>b>0)
C.
D.
答案:C32.大家知道,在數(shù)列{an}中,若an=n,則sn=1+2+3+…+n=12n2+12n,若an=n2,則
sn=12+22+32+…+n2=13n3+12n2+16n,于是,猜想:若an=n3,則sn=13+23+33+…+n3=an4+bn3+cn2+dn.
問:(1)這種猜想,你認(rèn)為正確嗎?
(2)不管猜想是否正確,這個結(jié)論是通過什么推理方法得到的?
(3)如果結(jié)論正確,請用數(shù)學(xué)歸納法給予證明.答案:(1)猜想正確;(2)這是一種類比推理的方法;(3)由類比可猜想,a=14,n=1時,a+b+c+d=1;n=2時,16a+8b+4c+d=9;n=3時,81a+27b+9c+d=36故解得a=14,b=12,c=14,∴sn=13+23+33+…+n3=14n4+12n3+14n2用數(shù)學(xué)歸納法證明:①n=1時,結(jié)論成立;②假設(shè)n=k時,結(jié)論成立,即13+23+33+…+k3=14k4+12k3+14k2=[k(k+1)2]2則n=k+1時,左邊=13+23+33+…+k3+(k+1)3=14k4+12k3+14k2+(k+1)3=[k(k+1)2]2+(k+1)3=(k+12)2(k2+4k+4)=[(k+1)(k+2)2]2=右邊,結(jié)論成立由①②可知,sn=13+23+33+…+n3=14n4+12n3+14n2,成立33.已知隨機(jī)變量X~B(n,0.8),D(X)=1.6,則n的值是()
A.8
B.10
C.12
D.14答案:B34.下列幾何體各自的三視圖中,有且僅有兩個視圖相同的是()
A.①②B.①③C.①④D.②④答案:正方體的三視圖都相同,而三棱臺的三視圖各不相同,圓錐和正四棱錐的,正視圖和側(cè)視圖相同,所以,正確為D.故選D35.下列函數(shù)中,定義域為(0,+∞)的是()A.y=1xB.y=xC.y=1x2D.y=12x答案:由于函數(shù)y=1x的定義域為(0,+∞),函數(shù)y=x的定義域為[0,+∞),函數(shù)y=1x2的定義域為{x|x≠0},函數(shù)y=12x的定義域為R,故只有A中的函數(shù)滿足定義域為(0,+∞),故選A.36.O、A、B、C為空間四個點,又為空間的一個基底,則()
A.O、A、B、C四點共線
B.O、A、B、C四點共面,但不共線
C.O、A、B、C四點中任意三點不共線
D.O、A、B、C四點不共面答案:D37.已知直線經(jīng)過點A(0,4)和點B(1,2),則直線AB的斜率為______.答案:因為A(0,4)和點B(1,2),所以直線AB的斜率k=2-41-0=-2故為:-238.設(shè)有三個命題:“①0<12<1.②函數(shù)f(x)=log
12x是減函數(shù).③當(dāng)0<a<1時,函數(shù)f(x)=logax是減函數(shù)”.當(dāng)它們構(gòu)成三段論時,其“小前提”是______(填序號).答案:三段話寫成三段論是:大前提:當(dāng)0<a<1時,函數(shù)f(x)=logax是減函數(shù),小前提:0<12<1,結(jié)論:函數(shù)f(x)=log
12x是減函數(shù).其“小前提”是①.故為:①.39.已知橢圓C的左右焦點坐標(biāo)分別是(-2,0),(2,0),離心率22,直線y=x-1與橢圓C交于不同的兩點A,B.
(1)求橢圓C的方程;
(2)求弦AB的長度.答案:(本小題滿分13分)(1)依題意可設(shè)橢圓C的方程為x2a2+y2b2=1(a>b>0)…(1分)則c=2e=ca=22,解得a=22c=2…(3分)∴b2=a2-c2=8-4=4…(5分)∴橢圓C的方程為x28+y24=1…(6分)(2)設(shè)A(x1,y1),B(x2,y2)…(7分)聯(lián)立方程x28+y24=1y=x-1,消去y,并整理得:3x2-4x-6=0…(9分)∴x1+x2=43x1?x2=-2…(10分)∴|AB|=1+12|x2-x1|=2[(x1+x2)2-4x1x2]
=2[(43)2-4×(-2)]=4113…(12分)∴|AB|=4113…(13分)40.在平面幾何里,我們知道,正三角形的外接圓和內(nèi)切圓的半徑之比是2:1。拓展到空間,研究正四面體(四個面均為全等的正三角形的四面體)的外接球和內(nèi)切球的半徑關(guān)系,可以得出的正確結(jié)論是:正四面體的外接球和內(nèi)切球的半徑之比是(
)。答案:3:141.已知M和N分別是四面體OABC的邊OA,BC的中點,且,若=a,=b,=c,則用a,b,c表示為()
A.
B.
C.
D.
答案:B42.已知a、b均為單位向量,它們的夾角為60°,那么|a+3b|=()
A.
B.
C.
D.4答案:C43.若向量、、滿足++=,=3,=1,=4,則等于(
)
A.-11
B.-12
C.-13
D.-14答案:C44.復(fù)數(shù)3+4i的模等于______.答案:|3+4i|=32+42=5,故為5.45.(1)已知p3+q3=2,求證p+q≤2,用反證法證明時,可假設(shè)p+q≥2;
(2)已知a,b∈R,|a|+|b|<1,求證方程x2+ax+b=0的兩根的絕對值都小于1.用反證法證明時可假設(shè)方程有一根x1的絕對值大于或等于1,即假設(shè)|x1|≥1,以下結(jié)論正確的是()
A.(1)的假設(shè)錯誤,(2)的假設(shè)正確
B.(1)與(2)的假設(shè)都正確
C.(1)的假設(shè)正確,(2)的假設(shè)錯誤
D.(1)與(2)的假設(shè)都錯誤答案:A46.在平面直角坐標(biāo)中,h為坐標(biāo)原點,設(shè)向量OA=a,OB=b,其中a=(3,1),b=(1,3),若OC=λa+μb,且0≤λ≤μ≤1,C點所有可能的位置區(qū)域用陰影表示正確的是()A.
B.
C.
D.
答案:∵向量OA=a,OB=b,a=(3,1),b=(1,3),OC=λa+μb,∴OC=(3λ,λ)+(μ,3μ)=(3λ+μ,λ+3μ),∵0≤λ≤μ≤1,∴0≤3λ+μ≤4,0≤λ+3μ≤4,且3λ+μ≤λ+3μ.故選A.47.已知動點P(x,y)滿足(x+2)2+y2-(x-2)2+y2=2,則動點P的軌跡是______.答案:∵(x+2)2+y2-(x-2)2+y2=2,即動點P(x,y)到兩定點(-2,0),(2,0)的距離之差等于2,由雙曲線定義知動點P的軌跡是雙曲線的一支(右支).:雙曲線的一支(右支).48.某校選修乒乓球課程的學(xué)生中,高一年級有40名,高二年級有50名,現(xiàn)用分層抽樣的方法在這90名學(xué)生中抽取一個樣本,已知在高一年級的學(xué)生中抽取了8名,則在高二年級的學(xué)生中應(yīng)抽取的人數(shù)為______.答案:∵高一年級有40名學(xué)生,在高一年級的學(xué)生中抽取了8名,∴每個個體被抽到的概率是
840=15∵高二年級有50名學(xué)生,∴要抽取50×15=10名學(xué)生,故為:10.49.命題“存在x0∈R,2x0≤0”的否定是()
A.不存在x0∈R,2x0>0
B.存在x0∈R,2x0≥0
C.對任意的x∈R,2x≤0
D.對任意的x∈R,2x>0答案:D50.整數(shù)630的正約數(shù)(包括1和630)共有______個.答案:首先將630分解質(zhì)因數(shù)630=2×32×5×7;然后注意到每一因數(shù)可出現(xiàn)的次冪數(shù),如2可有20,21兩種情況,3有30,31,32三種情況,5有50,51兩種情況,7有70,71兩種情況,按分步計數(shù)原理,整數(shù)630的正約數(shù)(包括1和630)共有2×3×2×2=24個.故為:24.第3卷一.綜合題(共50題)1.某單位共有老、中、青職工430人,其中青年職工160人,中年職工人數(shù)是老年職工人數(shù)的2倍.為了解職工身體狀況,現(xiàn)采用分層抽樣方法進(jìn)行調(diào)查,在抽取的樣本中有青年職工32人,則該樣本中的老年職工人數(shù)為()
A.9
B.18
C.27
D.36答案:B2.設(shè)A、B、C、D是半徑為r的球面上的四點,且滿足AB⊥AC、AD⊥AC、AB⊥AD,則S△ABC+S△ABD+S△ACD的最大值是[
]A、r2
B、2r2
C、3r2
D、4r2答案:B3.已知函數(shù)f(x)=x2+px+q與函數(shù)y=f(f(f(x)))有一個相同的零點,則f(0)與f(1)()
A.均為正值
B.均為負(fù)值
C.一正一負(fù)
D.至少有一個等于0答案:D4.若向量e1,e2不共線,且ke1+e2與e1+ke2可以作為平面內(nèi)的一組基底,則實數(shù)k的取值范圍為______.答案:∵當(dāng)(ke1+e2)∥(e1+ke2),∴ke1+e2=λ(e1+ke2),∴ke1+e2=λe1+λke2,∴k=λ,1=λk,∴k2=1,k=±1,故ke1+e2與e1+ke2可以作為平面內(nèi)的一組基底,則實數(shù)k的取值范圍為k≠±1.故為:k≠±1.5.已知在一個二階矩陣M對應(yīng)變換的作用下,點A(1,2)變成了點A′(7,10),點B(2,0)變成了點B′(2,4),求矩陣M.答案:設(shè)M=abcd,則abcd12=710,abcd20=24,(4分)即a+2b=7c+2d=102a=22c=4,解得a=1b=3c=2d=4(8分)所以M=1234.(10分)6.如圖是從甲、乙兩個班級各隨機(jī)選出9名同學(xué)進(jìn)行測驗成績的莖葉圖,從圖中看,平均成績較高的是______班.答案:∵莖葉圖的數(shù)據(jù)得到甲同學(xué)成績:46,58,61,64,71,74,75,84,87;莖葉圖的數(shù)據(jù)得到乙同學(xué)成績:57,62,65,75,79,81,84,87,89.∴甲平均成績?yōu)?9;乙平均成績?yōu)?5;故為:乙.7.橢圓上有一點P,F(xiàn)1,F(xiàn)2是橢圓的左、右焦點,△F1PF2為直角三角形,則這樣的點P有()
A.3個
B.4個
C.6個
D.8個答案:C8.若A、B兩點的極坐標(biāo)為A(4
,
π3),B(6,0),則AB中點的極坐標(biāo)是
______(極角用反三角函數(shù)值表示)答案:A的直角坐標(biāo)為:(2,23),所以AB的中點坐標(biāo)為:(4,3)所以極徑為:19;極角為:α,tanα=34所以α=arctan34;AB中點的極坐標(biāo)是:(19,
arctan34)故為:(19,
arctan34)9.已知x、y之間的一組數(shù)據(jù)如下:
x0123y8264則線性回歸方程y=a+bx所表示的直線必經(jīng)過點()A.(0,0)B.(2,6)C.(1.5,5)D.(1,5)答案:∵.x=0+1+2+34=1.5,.y=8+2+6+44=5∴線性回歸方程y=a+bx所表示的直線必經(jīng)過點(1.5,5)故選C10.某商人將彩電先按原價提高40%,然后在廣告中寫上“大酬賓,八折優(yōu)惠”,結(jié)果是每臺彩電比原價多賺了270元,則每臺彩電原價是______元.答案:設(shè)每臺彩電的原價是x元,則有:(1+40%)x×0.8-x=270,解得:x=2250,故為:2250.11.設(shè)平面α內(nèi)兩個向量的坐標(biāo)分別為(1,2,1)、(-1,1,2),則下列向量中是平面的法向量的是()
A.(-1,-2,5)
B.(-1,1,-1)
C.(1,1,1)
D.(1,-1,-1)答案:B12.已知△ABC,A(-1,0),B(3,0),C(2,1),對它先作關(guān)于x軸的反射變換,再將所得圖形繞原點逆時針旋轉(zhuǎn)90°.
(1)分別求兩次變換所對應(yīng)的矩陣M1,M2;
(2)求△ABC在兩次連續(xù)的變換作用下所得到△A′B′C′的面積.答案:(1)關(guān)于x軸的反射變換M1=100-1,繞原點逆時針旋轉(zhuǎn)90°的變換M2=0-110.(4分)(2)∵M(jìn)2?M1=0-110100-1=0110,(6分)△ABC在兩次連續(xù)的變換作用下所得到△A′B′C′,∴A(-1,0),B(3,0),C(2,1)變換成:A′(0,-1),B′(0,3),C′(1,2),(9分)∴△A'B'C'的面積=12×4×1=2.(10分)13.若直線
3x+y+a=0過圓x2+y2+2x-4y=0的圓心,則a的值為()
A.-1
B.1
C.3
D.-3答案:B14.若矩陣M=1101,則直線x+y+2=0在M對應(yīng)的變換作用下所得到的直線方程為______.答案:設(shè)直線x+y+2=0上任意一點(x0,y0),(x,y)是所得的直線上一點,[1
1][x]=[x0][0
1][y]=[y0]∴x+y=x0y=y0,∴代入直線x+y+2=0方程:(x+y)+y+2=0得到I的方程x+2y+2=0故為:x+2y+2=0.15.(選做題)已知矩陣.122x.的一個特征值為3,求另一個特征值及其對應(yīng)的一個特征向量.答案:矩陣M的特征多項式為.λ-1-2-2λ-x.=(λ-1)(λ-x)-4…(1分)因為λ1=3方程f(λ)=0的一根,所以x=1…(3分)由(λ-1)(λ-1)-4=0得λ2=-1,…(5分)設(shè)λ2=-1對應(yīng)的一個特征向量為α=xy,則-2x-2y=0-2x-2y=0得x=-y…(8分)令x=1則y=-1,所以矩陣M的另一個特征值為-1,對應(yīng)的一個特征向量為α=1-1…(10分)16.用WHILE語句求1+2+22+23+…+263的值.答案:程序如下:i=0S=0While
i<=63s=s+2^ii=i+1WendPrint
send17.如圖放置的等腰直角三角形ABC薄片(∠ACB=90°,AC=2)沿x軸滾動,設(shè)頂點A(x,y)的軌跡方程是y=f(x),則f(x)在其相鄰兩個零點間的圖象與x軸所圍區(qū)域的面積為______.答案:作出點A的軌跡中相鄰兩個零點間的圖象,如圖所示.其軌跡為兩段圓弧,一段是以C為圓心,CA為半徑的四分之一圓??;一段是以B為圓心,BA為半徑,圓心角為3π4的圓?。渑cx軸圍成的圖形的面積為12×22×π2+12×2×2+12×(22)2×3π4=2+4π.故為:2+4π.18.已知隨機(jī)變量ξ服從正態(tài)分布N(2,a2),且P(ξ<4)=0.8,則P(0<ξ<2)=()
A.0.6
B.0.4
C.0.3
D.0.2答案:C19.若定義在正整數(shù)有序?qū)仙系亩瘮?shù)f滿足:①f(x,x)=x,②f(x,y)=f(y,x);③(x+y)f(x,y)=yf(x,x+y),則f(12,16)的值是()A.12B.16C.24D.48答案:依題意:∵(x+y)f(x,y)=yf(x,x+y),∴f(x,x+y)=1y(x+y)f(x,y)∴f(12,16)=f(12,12+4)=14(12+4)f(12,4)=4f(12,4)=4f(4,12)=4f(4,4+8)=4×18(4+8)f(4,8)=6f(4,8)=6f(4,4+4)=6×14(4+4)f(4,4)=12f(4,4)=12×4=48故選D20.
已知向量a,b的夾角為,且|a|=2,|b|=1,則向量a與向量2+2b的夾角等于()
A.
B.
C.
D.答案:D21.在△ABC中,已知D是AB邊上一點,若AD=2DB,CD=λCA+μCB,則λμ的值為______.答案:∵AD=2DB,∴CD=CA+23
AB∵AB=CB-CA∴CD=CA+23AB=CA+23(CB-CA)=13CA+23CB∵CD=λCA+μCB∴λ=13,μ=23∴λμ=12故為1222.已知函數(shù)f
(x)=logx,則方程()|x|=|f(x)|的實根個數(shù)是()
A.1
B.2
C.3
D.2006答案:B23.直角坐標(biāo)xOy平面上,平行直線x=n(n=0,1,2,…,5)與平行直線y=n(n=0,1,2,…,5)組成的圖形中,矩形共有()
A.25個
B.36個
C.100個
D.225個答案:D24.(理)在極坐標(biāo)系中,半徑為1,且圓心在(1,0)的圓的方程為()
A.ρ=sinθ
B.ρ=cosθ
C.ρ=2sinθ
D.ρ=2cosθ答案:D25.已知直線3x+2y-3=0和6x+my+1=0互相平行,則它們之間的距離是()
A.
B.
C.
D.答案:B26.已知雙曲線的a=5,c=7,則該雙曲線的標(biāo)準(zhǔn)方程為()
A.-=1
B.-=1
C.-=1或-=1
D.-=0或-=0答案:C27.在四邊形ABCD中,若=+,則()
A.ABCD為矩形
B.ABCD是菱形
C.ABCD是正方形
D.ABCD是平行四邊形答案:D28.用反證法證明“a+b=1”時的反設(shè)為()
A.a(chǎn)+b>1且a+b<1
B.a(chǎn)+b>1
C.a(chǎn)+b>1或a+b<1
D.a(chǎn)+b<1答案:C29.若一個橢圓長軸的長度、短軸的長度和焦距成等差數(shù)列,則該橢圓的離心率是(
)
A.
B.
C.
D.答案:B30.某廠一批產(chǎn)品的合格率是98%,檢驗單位從中有放回地隨機(jī)抽取10件,則計算抽出的10件產(chǎn)品中正品數(shù)的方差是______.答案:用X表示抽得的正品數(shù),由于是有放回地隨機(jī)抽取,所以X服從二項分布B(10,0.98),所以方差D(X)=10×0.98×0.02=0.196故為:0.196.31.設(shè)P、Q為兩個非空實數(shù)集,定義集合P+Q={a+b|a∈P,b∈Q}.若P={0,2,5},Q={1,2,6},則P+Q中元素的個數(shù)是()A.6B.7C.8D.9答案:∵P={0,2,5},Q={1,2,6},P+Q={a+b|a∈P,b∈Q}∴當(dāng)a=0時,b∈Q,P+Q={1,2,6}當(dāng)a=2時,b∈Q,P+Q={3,4,8}當(dāng)a=5時,b∈Q,P+Q={6,7,11}∴P+Q={1,2,3,4,6,7,8,11}故選C32.若事件與相互獨立,且,則的值等于A.B.C.D.答案:B解析:事件“”表示的意義是事件與同時發(fā)生,因為二者相互獨立,根據(jù)相互獨立事件同時發(fā)生的概率公式得:.33.已知=1-ni,其中m,n是實數(shù),i是虛數(shù)單位,則m+ni=(
)
A.1+2i
B.1-2i
C.2+i
D.2-i答案:C34.,不等式恒成立的否定是
▲
答案:,不等式成立解析::,不等式成立點評:本題考查推理與證明部分命題的否定,屬于容易題35.半徑為R的球內(nèi)接一個正方體,則該正方體的體積為()A.22RB.4π3R3C.893R3D.193R3答案:∵半徑為R的球內(nèi)接一個正方體,設(shè)正方體棱長為a,正方體的對角線過球心,可得正方體對角線長為:a2+a2+a2=2R,可得a=2R3,∴正方體的體積為a3=(2R3)3=83R39,故選C;36.P為△ABC內(nèi)一點,且PA+3PB+7PC=0,則△PAC與△ABC面積的比為______.答案:(如圖)分別延長
PB、PC
至
B1、C1,使
PB1=3PB,PC1=7PC,則由已知可得:PA+PB1+PC1=0,故點P是三角形
AB1C1
的重心,設(shè)三角形
AB1C1
的面積為
3S,則S△APC1=S△APB1=S△PB1C1=S,而S△APC=17S△APC1=S7,S△ABP=13S△APB1=S3,S△PBC=13×17S△PB1C1=S21,所以△PAC與△ABC面積的比為:S7S7+S3+S21=311,故為:31137.不等式log32x-log3x2-3>0的解集為()
A.(,27)
B.(-∞,-1)∪(27,+∞)
C.(-∞,)∪(27,+∞)
D.(0,)∪(27,+∞)答案:D38.如圖所示,面積為S的平面凸四邊形的第i條邊的邊長記為ai(i=1,2,3,4),此四邊形內(nèi)任一點P到第i條邊的距離記為hi(i=1,2,3,4),若a11=a22=a33=a44=k,則4
i=1(ihi)=2Sk.類比以上性質(zhì),體積為V的三棱錐的第i個面的面積記為Si(i=1,2,3,4),此三棱錐內(nèi)任一點Q到第i個面的距離記為Hi(i=1,2,3,4),若S11=S22=S33=S44=K,則4
i=1(iHi)=()A.4VKB.3VKC.2VKD
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 加盟店簽合同范本(2篇)
- 2024年汽車運(yùn)輸車輛運(yùn)輸安全培訓(xùn)合同范本3篇
- 二零二五年度二次供水工程環(huán)保驗收合同
- 二零二五年度企業(yè)級二手服務(wù)器采購與租賃服務(wù)合同3篇
- 2024版彩票銷售專員合作合同精簡版版B版
- 2024版地下綜合管廊建設(shè)協(xié)議規(guī)范版B版
- 2024年項目分包與合作合同
- 2024年語音識別技術(shù)開發(fā)合同
- 2024版建筑工程施工合同范例下載
- 2024版公司文員雇傭勞動合同
- 貴州省黔東南州2023-2024學(xué)年九年級上學(xué)期期末文化水平測試化學(xué)試卷
- 《空調(diào)零部件介紹》課件
- 2024年度醫(yī)院內(nèi)分泌與代謝科述職報告課件
- 手術(shù)室無菌操作流程
- 農(nóng)業(yè)機(jī)械控制系統(tǒng)硬件在環(huán)測試規(guī)范
- 翁潭電站大王山輸水隧洞施工控制網(wǎng)設(shè)計說明書
- 隆胸術(shù)培訓(xùn)課件
- 鋼筋焊接培訓(xùn)課件
- 行政內(nèi)勤培訓(xùn)課件
- 化纖企業(yè)(化學(xué)纖維紡織企業(yè))安全生產(chǎn)操作規(guī)程
- 重大事故隱患專項排查檢查表
評論
0/150
提交評論